1 / 41

Dr. Hugh Blanton ENTC 3331

ENTC 3331 RF Fundamentals. Dr. Hugh Blanton ENTC 3331. Fields and Waves. VECTORS and VECTOR CALCULUS. VECTORS. Today’s Class will focus on:. vectors - description in 3 coordinate systems. vector operations - DOT & CROSS PRODUCT. vector calculus - AREA and VOLUME INTEGRALS.

jessie
Download Presentation

Dr. Hugh Blanton ENTC 3331

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ENTC 3331 RF Fundamentals Dr. Hugh Blanton ENTC 3331

  2. Fields and Waves VECTORS and VECTOR CALCULUS Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 2

  3. VECTORS Today’s Class will focus on: • vectors - description in 3 coordinate systems • vector operations - DOT & CROSS PRODUCT • vector calculus - AREA and VOLUME INTEGRALS Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 3

  4. Choice is based on symmetry of problem VECTOR REPRESENTATION 3 PRIMARY COORDINATE SYSTEMS: • RECTANGULAR • CYLINDRICAL • SPHERICAL Examples: Sheets - RECTANGULAR Wires/Cables - CYLINDRICAL Spheres - SPHERICAL Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 4

  5. Orthogonal Coordinate Systems: (coordinates mutually perpendicular) z P(x,y,z) Cartesian Coordinates y P (x,y,z) x Rectangular Coordinates z z P(r, θ, z) Cylindrical Coordinates P (r, Θ, z) y r x θ z P(r, θ, Φ) Spherical Coordinates θ r P (r, Θ, Φ) y x Φ Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 5 Page 108

  6. Parabolic Cylindrical Coordinates (u,v,z) • Paraboloidal Coordinates (u, v, Φ) • Elliptic Cylindrical Coordinates (u, v, z) • Prolate Spheroidal Coordinates (ξ, η, φ) • Oblate Spheroidal Coordinates (ξ, η, φ) • Bipolar Coordinates (u,v,z) • Toroidal Coordinates (u, v, Φ) • Conical Coordinates (λ, μ, ν) • Confocal Ellipsoidal Coordinate (λ, μ, ν) • Confocal Paraboloidal Coordinate (λ, μ, ν) Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 6

  7. Parabolic Cylindrical Coordinates Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 7

  8. Paraboloidal Coordinates Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 8

  9. Elliptic Cylindrical Coordinates Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 9

  10. Prolate Spheroidal Coordinates Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 10

  11. Oblate Spheroidal Coordinates Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 11

  12. Bipolar Coordinates Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 12

  13. Toroidal Coordinates Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 13

  14. Conical Coordinates Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 14

  15. Confocal Ellipsoidal Coordinate Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 15

  16. Confocal Paraboloidal Coordinate Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 16

  17. z z Cartesian Coordinates P(x,y,z) P(x,y,z) P(r, θ, Φ) θ r y x y x Φ Cylindrical Coordinates P(r, θ, z) Spherical Coordinates P(r, θ, Φ) z z P(r, θ, z) y r x θ Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 17

  18. z y x VECTOR NOTATION VECTOR NOTATION: Rectangular or Cartesian Coordinate System Dot Product (SCALAR) Cross Product (VECTOR) Magnitude of vector Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 18

  19. Cartesian Coordinates ( x, y, z) Vector representation z z1 Z plane Magnitude of A x plane y plane Az y1 y Ay Position vector A Ax x1 x Base vector properties Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 19 Page 109

  20. Cartesian Coordinates z Dot product: Az y Cross product: Ay Ax x Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 20 Back Page 108

  21. z r P z x f y VECTOR REPRESENTATION: CYLINDRICAL COORDINATES UNIT VECTORS: Cylindrical representation uses: r ,f , z Dot Product (SCALAR) Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 21

  22. z P q r x f y VECTOR REPRESENTATION: SPHERICAL COORDINATES UNIT VECTORS: Spherical representation uses: r ,q , f Dot Product (SCALAR) Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 22

  23. z y x VECTOR REPRESENTATION: UNIT VECTORS Rectangular Coordinate System Unit Vector Representation for Rectangular Coordinate System The Unit Vectors imply : Points in the direction of increasing x Points in the direction of increasing y Points in the direction of increasing z Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 23

  24. z r P z f x y VECTOR REPRESENTATION: UNIT VECTORS Cylindrical Coordinate System The Unit Vectors imply : Points in the direction of increasing r Points in the direction of increasing j Points in the direction of increasing z Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 24

  25. z P q r f y x VECTOR REPRESENTATION: UNIT VECTORS Spherical Coordinate System The Unit Vectors imply : Points in the direction of increasing r Points in the direction of increasing q Points in the direction of increasing j Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 25

  26. VECTOR REPRESENTATION: UNIT VECTORS Summary RECTANGULAR Coordinate Systems CYLINDRICAL Coordinate Systems SPHERICAL Coordinate Systems NOTE THE ORDER! r,f, z r,q ,f Note: We do not emphasize transformations between coordinate systems Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 26

  27. Unit is in “meters” METRIC COEFFICIENTS 1. Rectangular Coordinates: When you move a small amount in x-direction, the distance is dx In a similar fashion, you generate dy and dz Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 27

  28. Differential quantities: Length: Area: Volume: Cartesian Coordinates Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 28 Page 109

  29. y df r x METRIC COEFFICIENTS 2. Cylindrical Coordinates: Differential Distances: Distance = r df ( dr, rdf, dz ) Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 29

  30. z P q r r sinq f y x y df x METRIC COEFFICIENTS 3. Spherical Coordinates: Differential Distances: Distance = r sinq df ( dr, rdq, r sinq df ) Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 30

  31. METRIC COEFFICIENTS Representation of differential length dl in coordinate systems: rectangular cylindrical spherical Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 31

  32. dy dx y 6 2 3 7 x AREA INTEGRALS • integration over 2 “delta” distances Example: AREA = = 16 Note that: z = constant In this course, area & surface integrals will be on similar types of surfaces e.g. r =constant or f = constant or q = constant et c…. Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 32

  33. SURFACE NORMAL Representation of differential surface element: Vector is NORMAL to surface Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 33

  34. DIFFERENTIALS FOR INTEGRALS Example of Line differentials or or Example of Surface differentials or Example of Volume differentials Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 34

  35. r radial distance in x-y plane Φ azimuth angle measured from the positive x-axis Z Cylindrical Coordinates ( r, θ, z) A1 Vector representation Base Vectors Magnitude of A Base vector properties Position vector A Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 35 Back Pages 109-112

  36. Cylindrical Coordinates Dot product: A B Cross product: Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 36 Back Pages 109-111

  37. Cylindrical Coordinates Differential quantities: Length: Area: Volume: Pages 109-112 Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 37

  38. Spherical Coordinates (R, θ, Φ) Vector representation Magnitude of A Position vector A Base vector properties Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 38 Back Pages 113-115

  39. Spherical Coordinates Dot product: A B Cross product: Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 39 Back Pages 113-114

  40. Spherical Coordinates Differential quantities: Length: Area: Volume: Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 40 Back Pages 113-115

  41. Cartesian to Cylindrical Transformation Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 41 Back Page 115

More Related