270 likes | 282 Views
Explore the principles of thermal imaging in the field of quantum optics through this informative course. Topics include mean number, standard deviation, energy density, single-mode mean, SNR, spectral radiant exitance, Lambert's Law, spectral radiance, black-body equations, solar irradiance, outdoor radiance levels, thermal modes, probability distributions, and more.
E N D
ECEG398 Quantum Optics Course NotesPart 2: Thermal Imagers Prof. Charles A. DiMarzio and Prof. Anthony J. Devaney Northeastern University Spring 2006 Chuck DiMarzio, Northeastern University
Thermal Fields • Mean Number (Text Eq.2.141): • Std. Deviation (Text Eq. 2.149): • Energy Density (Text Eq. 2.151): Chuck DiMarzio, Northeastern University
Single-Mode Mean Chuck DiMarzio, Northeastern University
Single Mode SNR Upper Trace is Poisson 0.1mm Chuck DiMarzio, Northeastern University
Spectral Radiant Exitance Ul Watch the Units: Chuck DiMarzio, Northeastern University
Signal & Noise Radiant Exitance Chuck DiMarzio, Northeastern University
Lambert’s Law A’ A Chuck DiMarzio, Northeastern University
Spectral Radiance z dq q y df f x Chuck DiMarzio, Northeastern University
Black-Body Equation (1) Chuck DiMarzio, Northeastern University
m 10 10 m / 2 5 10 , Spectral Radiant Exitance, W/m 0 10 -5 10 -10 10 l M -1 0 1 2 10 10 10 10 l m , Wavelength, m Black Body Equations (2) 10000 5000 2000 500 1000 T=300k Chuck DiMarzio, Northeastern University
Solar Irradiance on Earth Data from The Science of Color, Crowell, 1953 3000 Exoatmospheric filename=m1695.m Sea Level 2 5000 K Black Body Normalized to 1000 W/m 2500 2 6000 K Black Body Normalized to 1560 W/m m m / 2 2000 1500 , Spectral Irradiance, W/m 1000 l E 500 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 l , Wavelength, nm Chuck DiMarzio, Northeastern University
6000K Sun 6.9 G Lux Visible Sunlit Cloud 6.9 k Lux Near IR Mid IR Blue Sky 300K night sky Far IR Typical Outdoor Radiance Levels Ultraviolet Atmospheric Passbands Chuck DiMarzio, Northeastern University
Thermal Imaging T = 300 K 1 /Delta T .5 l M D 0 -1 0 1 2 10 10 10 10 T = 500 K 6 /Delta T 4 l 2 M D 0 -1 0 1 2 10 10 10 10 l m , Wavelength, m Chuck DiMarzio, Northeastern University
Etendue AW is Constant NA of Detector Lens Viewed by Pixel Area of PRC Single Mode NA of PRC Pixel Area NA of Objective Chuck DiMarzio, Northeastern University
Spectral Flux (Power) Per Mode Chuck DiMarzio, Northeastern University
Probability Distributions (Poisson) (Delta) (Delta) Laser Mode Re(E) Im(E) |E| |E|2 n (Bose- Einstein) (Gaussian) (Rayleigh) (Exponential) Thermal Mode (Poisson) Many Thermal Modes Summed on Detector Chuck DiMarzio, Northeastern University
Detected Photons (Signal & Bkg) Filter Amp Preamp Ps PBKG BPF hq PNoise Chuck DiMarzio, Northeastern University
Detector Examples: Spectral Photon Radiance 10464-3-32 Chuck DiMarzio, Northeastern University
Detector Examples: Total Background Power 10464-3-31 Chuck DiMarzio, Northeastern University
Noise Photons (Bkg. Limited) Chuck DiMarzio, Northeastern University
Noise-Equivalent Power Chuck DiMarzio, Northeastern University
Detector Examples: NEP 10464-3-3 Chuck DiMarzio, Northeastern University
D-Star Chuck DiMarzio, Northeastern University
Detector Examples: Detectivity, D* 10464-3-34 Chuck DiMarzio, Northeastern University
Estimating the Temperature Chuck DiMarzio, Northeastern University
Noise-Equivalent Delta T Chuck DiMarzio, Northeastern University
Calculating NEDT T=300Kelvin, hq=0.8, B=30 Hz, Dl=1mm, A=(10mm)2, W=0.1 sr NEDT=5 mKelvin 7 X 106 Photons/Kelvin Chuck DiMarzio, Northeastern University