1 / 23

Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011

Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. First Assignment. e-mail to listserv@listserv.uta.edu In the body of the message include subscribe EE5342

Download Presentation

Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. First Assignment • e-mail to listserv@listserv.uta.edu • In the body of the message include subscribe EE5342 • This will subscribe you to the EE5342 list. Will receive all EE5342 messages • If you have any questions, send to ronc@uta.edu, with EE5342 in subject line.

  3. Second Assignment • Submit a signed copy of the document that is posted at www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf

  4. Schedule Changes Due to the University Closures last week • Plan to meet until noon some days in the next few weeks. This way we will make up the lost time. The first extended class will be Wednesday, February 9. • The MT will be postponed until Wednesday, February 16. All other due dates and tests will remain the same.

  5. Equipartitiontheorem • The thermodynamic energy per degree of freedom is kT/2 Consequently,

  6. Carrier velocitysaturation1 • The mobility relationship v = mE is limited to “low” fields • v < vth = (3kT/m*)1/2 defines “low” • v = moE[1+(E/Ec)b]-1/b, mo = v1/Ec for Si parameter electrons holes v1 (cm/s) 1.53E9 T-0.87 1.62E8 T-0.52 Ec (V/cm) 1.01 T1.55 1.24 T1.68 b 2.57E-2 T0.66 0.46 T0.17

  7. vdrift[cm/s]vs. E [V/cm](Sze2, fig. 29a)

  8. Carrier velocitysaturation (cont.) • At 300K, for electrons, mo = v1/Ec = 1.53E9(300)-0.87/1.01(300)1.55 = 1504 cm2/V-s, the low-field mobility • The maximum velocity (300K) is vsat = moEc = v1 =1.53E9 (300)-0.87 = 1.07E7 cm/s

  9. Diffusion ofcarriers • In a gradient of electrons or holes, p and n are not zero • Diffusion current,`J =`Jp +`Jn (note Dp and Dn are diffusion coefficients)

  10. Diffusion ofcarriers (cont.) • Note (p)x has the magnitude of dp/dx and points in the direction of increasing p (uphill) • The diffusion current points in the direction of decreasing p or n (downhill) and hence the - sign in the definition of`Jp and the + sign in the definition of`Jn

  11. Diffusion ofCarriers (cont.)

  12. Current densitycomponents

  13. Total currentdensity

  14. Doping gradient induced E-field • If N = Nd-Na = N(x), then so is Ef-Efi • Define f = (Ef-Efi)/q = (kT/q)ln(no/ni) • For equilibrium, Efi = constant, but • for dN/dx not equal to zero, • Ex = -df/dx =- [d(Ef-Efi)/dx](kT/q) = -(kT/q) d[ln(no/ni)]/dx = -(kT/q) (1/no)[dno/dx] = -(kT/q) (1/N)[dN/dx], N > 0

  15. Induced E-field(continued) • Let Vt = kT/q, then since • nopo = ni2 gives no/ni = ni/po • Ex = - Vt d[ln(no/ni)]/dx = - Vt d[ln(ni/po)]/dx = - Vt d[ln(ni/|N|)]/dx, N = -Na < 0 • Ex = - Vt (-1/po)dpo/dx = Vt(1/po)dpo/dx = Vt(1/Na)dNa/dx

  16. The Einsteinrelationship • For Ex = - Vt (1/no)dno/dx, and • Jn,x = nqmnEx + qDn(dn/dx)= 0 • This requires that nqmn[Vt (1/n)dn/dx] = qDn(dn/dx) • Which is satisfied if

  17. E - - Ec Ec Ef Efi gen rec Ev Ev + + k Direct carriergen/recomb (Excitation can be by light)

  18. Direct gen/recof excess carriers • Generation rates, Gn0 = Gp0 • Recombination rates, Rn0 = Rp0 • In equilibrium: Gn0 = Gp0 = Rn0 = Rp0 • In non-equilibrium condition: n = no + dn and p = po + dp, where nopo=ni2 and for dn and dp > 0, the recombination rates increase to R’n and R’p

  19. Direct rec forlow-level injection • Define low-level injection as dn = dp < no, for n-type, and dn = dp < po, for p-type • The recombination rates then are R’n = R’p = dn(t)/tn0, for p-type, and R’n = R’p = dp(t)/tp0, for n-type • Where tn0 and tp0 are the minority-carrier lifetimes

  20. Shockley-Read-Hall Recomb E Indirect, like Si, so intermediate state Ec Ec ET Ef Efi Ev Ev k

  21. S-R-H trapcharacteristics1 • The Shockley-Read-Hall Theory requires an intermediate “trap” site in order to conserve both E and p • If trap neutral when orbited (filled) by an excess electron - “donor-like” • Gives up electron with energy Ec - ET • “Donor-like” trap which has given up the extra electron is +q and “empty”

  22. S-R-H trapchar. (cont.) • If trap neutral when orbited (filled) by an excess hole - “acceptor-like” • Gives up hole with energy ET - Ev • “Acceptor-like” trap which has given up the extra hole is -q and “empty” • Balance of 4 processes of electron capture/emission and hole capture/ emission gives the recomb rates

  23. References • *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. • **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. • M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. • 1Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986. • 2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981. • 3 Physics of Semiconductor Devices, Shur, Prentice-Hall, 1990.

More Related