1 / 37

Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium

Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium. The 12 C( a,g ) 16 O reaction:. theoretical introduction. dreams and nightmares. Stellar models. Cross sections. Masses. b- lifetimes. Fission barriers. Etc…. Content of the talk.

joben
Download Presentation

Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pierre DescouvemontUniversité Libre de Bruxelles, Brussels, Belgium The 12C(a,g)16O reaction: theoretical introduction dreams and nightmares

  2. Stellar models Cross sections Masses b-lifetimes Fission barriers Etc…

  3. Content of the talk • Cross sections, S-factors: general properties • Reaction rates, stellar energies • H and He burning • Specificities of the 12C(a,g)16O reaction • Theoretical models

  4. Types of cross sections Cross sections • Transfer cross sections Examples: 3He(3He,a)2p6Li(p,a)3He Strong interaction22Ne(a,n)25Mg • Capture cross sections Examples: 3He(a,g)7Be7Be(p,g)8B Electromagnetic interaction12C(a,g)16O • Weak capture cross sections Examples: p(p,e+n)2H Weak interaction3He(p,e+n)4He • Others: fusion, spallation, etc..

  5. Cross section – S factor potential Astrophysical energies Relative distance • Cross section below the Coulomb barrier: s(E)  exp(-2ph)h=Sommerfeld parameter (h=Z1Z2e2/ v) • Astrophysical S factor: S(E)=s(E)*E*exp(2ph) smooth variation with energy • Low angular momenta (centrifugal barrier)

  6. E0

  7. Reaction rate with: N(E,T)= Maxwell-Boltzmann distribution ~ exp(-E/kT)T = temperaturev = relative velocity Gamow-peak energy : E0 = 0.122 m1/3 (Z1Z2T9)2/3 MeV DE0 = 0.237 m1/6 (Z1Z2)1/3 T95/6 MeV

  8. Examples:E0= Gamow peak energy Ecoul = Coulomb barrier • Essentially 2 problems in nuclear astrophysics: • Very low cross sections (in general not accessible in laboratories) • Need for radioactive beams

  9. Cross sections: theory Starting point: Schrodinger equation: HYJMp = EYJMp c=channel • Scattering states: E>0: Ic,Oc=Coulomb functions F1c, F2c=internal wave functions of the colliding nuclei UJp=collision matrix (contains all information) • Bound states : E<0 W=Whittaker function (decreases exponentially)

  10. Cross sections: • Transfer (nuclear interaction) small J values at low energies • Capture: (electromagnetic interaction):H=HN + Hg, with Hg=electromagnetic interaction • Hg is expanded in multipoles: electric (MEl) and magnetic (MMl)with •  one needs the matrix elements of the multipole operators (in general E1)

  11. H and He burning 99,77% p + p  d+ e+ + e 0,23% p + e - + p d + e 84,7% d + p 3He + ~210-5 % 13,8% 3He + 4He 7Be +  13,78% 0,02% 7Be + e-7Li + e 7Be + p 8B +  3He+3He+2p 7Li + p ->+ 8B 8Be*+ e+ +e 2 3He+p+e++e pp I pp II pp III hep • pp chain (from G. Fiorentini)

  12. CNO cycle The pp chain and the CNO cycle transform protons into 4He

  13. 4He burning • 12C produced by the triple a process: 3a→8Be+a→12C • 8Be(a,g)12C • 12C production enhanced by the 0+2 resonance • 0+2 resonance predicted from observation of 12C abundance (Hoyle) • 16O produced by the 12C(a,g)16O reactionIn the CNO cycle 15N(p,g)16O  15N(p,a)12C • 12C(a,g)16O determines the 12C/16O ratio after He burning

  14. Specificities of 12C(a,g)16O 16O spectrum • E1 (almost) forbidden • Two subthreshold states: 1-, 2+ • Interference effects

  15. =0 if isospin T=0 • E1 almost forbidden: • In practice: E1 not negligible (dominant?) owing to • isospin impurities (small T=1 components)cross section : • higher-order terms in the E1 operator • E1 is enhanced by multipolarity 1 reduced by cancellation of first-order terms • Mixing of E1 and E2 • Angular distributions: W(q)=WE1(q) + WE2(q) +cos(d1-d2)(WE1(q)WE2(q))1/2

  16. Two subthreshold states: • affect the S-factor at low energies • weak effect in measurements Ecm E0

  17. Interference effects: E1 Ecm

  18. Interference effects: E2 Ecm

  19. Current situation: E1 at 300 keV NACRE (Azuma 94)

  20. Current situation: E2 at 300 keV

  21. “Astrophysical approaches” • Weaver and Woosley : Phys. Rep. 227 (1993) 65 Production factor a 14 isotopes (from O to Ca) in a supernova explosion

  22. “Astrophysical approaches” • T. Metcalfe, Astrophys. J. 587 (2003) L43 • Influence of 12C(a,g)16O on the structure of white dwarfs (GD358 and CBS114)

  23. Theoretical models • Always necessary! (to go down to 300 keV) • Require: very high precision use of experimentally known information • Two main “families”: • Based on wave functions: Potential model (“direct-capture” model) Microscopic models • Based on parameters to be fitted R matrix K matrix • “Hybrid” models

  24. initial Ecm g final 1. The potential model • Structure of the colliding nuclei is neglected • Wave functions given by the radial equationV(r)=nucleus-nucleus potential (Gaussian, Woods-Saxon,etc.) • Cross section for a multipole l • Depth: Pauli principle → additional (unphysical) bound states • For 12C(a,g)16O no E1  limited to E2 only (no recent application)

  25. 2. Microscopic cluster models • Internal structure of the nuclei is taken into account • Hamiltonian Ti=kinetic energy Vij=nucleon-nucleon force • Wave functions: (spins zero)A = antisymmetrization operatorF1, F2 = internal wave functions gl(r) = relative wave function (output) • Inputs of the model: nucleon-nucleon interaction internal wave functions F1, F2 f1 f2 r

  26. Advantages: • Predictive power (little information is necessary) • Unified description of bound and scattering states (important for capture) → tests with spectroscopy • Applicable to capture and transfer reactions • Inelastic channels can be easily taken into account Problems: • Choice of the nucleon-nucleon interaction • Precise internal wave functions • Limited to low level densities → limited to A  25-30 • Computer times

  27. Application to 12C(a,g)16O:P.D., Phys. Rev. C 47 (1993) 210 SE2 (300 keV) = 90 keV-b

  28. 3. The R-matrix method • Main goal: to deal with continuum states • Main idea: to divide the space into 2 regions (radius a) • Internal: r ≤ a: Nuclear + coulomb interactions • External: r>a: Coulomb only • Example: 12C+a Exit channels 12C(2+)+a Entrance channel 12C+a Internal region 16O 12C+a 15N+p, 15O+n Nuclear+Coulomb:R-matrix parameters Coulomb Coulomb

  29. The R-matrix method • Definition of the R-matrix • = pole i, j = channels • N = number of poles • El = pole energy (parameter) • = reduced width (parameter) • The R-matrix is defined for each partial wave • « Observed » vs « calculated » parameters R-matrix parameters physical parameters Similar but not equal

  30. Subthreshold states • One pole: R-matrix equivalent to Breit-Wigner But: • Ga=total width: defined for resonances (ER>0) only • ga=reduced alpha width: defined for resonances (ER>0) AND bound states (ER<0) E E=0

  31. Subthreshold states • Effect: enhancement of the S factor at low energies • Not due to the width of the state: Gg |ER| • Enhancement essentially given by: • ER= energy (“easy”): spectroscopy • Gg=radiative width (“easy”): spectroscopy • ga=reduced a width (difficult): indirect methods! • Transfer : 12C(7Li,3H)16O + DWBA analysis12C(6Li,d)16O • Phase shifts: derived from the a+12C elastic cross section

  32. Application to 12C(a,g)16O: E1(Azuma et al, Phys. Rev. C50 (1994) 1194) simultaneous fit of • 12C(a,g)16O S factor • 12C+a phase shift • 16N b decay parameters of the 1-1 and 1-2 states (+background): • 12C+a: El, gl • 12C(a,g)16O : El, gl, Ggl (radiative width) • 16N b decay : El, gl,Al (b probabilities)  Constraints on common parameters El, gl

  33. 16N b decay 1- phase shift Pole 2: E2,g2,Nb2 Pole 1: E1,g1 Pole 1: E1,g1,Nb1 Pole 2: E2,g2 S(0.3) = 79 ± 21 keV-b (Azuma et al., 1994) 12C(a,g)16O Pole 3: background Pole 1: E1,g1,Gg1 Pole 2: E2,g2,Gg2

  34. Application to 12C(a,g)16O: E2 2+ phase shift 12C(a,g)16O : E2 Pole 2: E2,g2,Nb2 Pole 1: E1,g1,Nb1 Pole 1: E1,g1,Gg1 Pole 2: E2,g2,Gg2 Pole 3: background Can we determine g1 from elastic scattering? Probably NO!(J.-M. Sparenberg, Phys. Rev. C 69, 034601 (2004))

  35. Cascade transitions Ground state:E1: 50-100 keV-b E2: 50-200 keV-b Cascade (Redder et al., 1987)0+ : 13 keV-b 3- : 0.29 keV-b 2+ : 7.0, 4.2 keV-b 1- : 1.3 keV-b→ small compared to the g.s. Cascade

  36. For tomorrow R-matrix theory: General formulation Application to 12C(a,g)16O Discussion of the E2 component

More Related