1 / 62

M O L EC U LAR B A S IS OF I N H E RI T ANCE

M O L EC U LAR B A S IS OF I N H E RI T ANCE. T H E D N A :. DNA is a long polymer of deoxyribonucleotides. The length of the DNA depends on, number of nucleotide pair present in it. Characteristics of the organism depend on the length of the DNA. Bacteriophage ø174 has 5386 nucleotides.

jocelynj
Download Presentation

M O L EC U LAR B A S IS OF I N H E RI T ANCE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MOLECULARBASISOFINHERITANCE

  2. THEDNA: • DNAisalongpolymerofdeoxyribonucleotides. • ThelengthoftheDNAdependson,numberofnucleotidepairpresentinit. • CharacteristicsoftheorganismdependonthelengthoftheDNA. • Bacteriophageø174has5386nucleotides. • Bacteriophagelambdahas48502basepairs. • Escherichiacolihave4.6X106basepairs. • Humangenome(haploid)is3.3X109bp.

  3. Structureofpolynucleotidechain: • Anucleotidehasthreecomponent:- • Anitrogenbase • Apentosesugar(riboseinRNAanddeoxyriboseinDNA) • Aphosphoricacid. • Therearetwotypesofnitrogenbases: • Purines(AdenineandGuanine) • Pyrimidines(Cytosine,UracilandThymine) • Adenine,GuanineandCytosineiscommoninRNAandDNA. • UracilispresentinRNAandThymineispresentinDNAinplaceofUracil. • PentosesugarisriboseinRNAandDeoxyriboseinDNA. • AnitrogenbaseattachedtothepentosesugaratC1ofpentose • sugarby

  4. Phosphoricacidattachedtothe5’ OH ofanucleosidebyPhosphodiesterlinkageacorrespondingnucleotideisformed.(Ribonucleotideordeoxyribonucleotidesdependingonthesugarunit). • Two nucleotides are joined by 3’-5’ Phosphodiesterlinkagetoformdinucleotide. • Morethantwonucleotidesjoinedtoformpolynucleotidechain. • Polynucleotide chain has a free phosphate moiety at 5’ end of sugar, is referred to as • 5’ end • In the other end of the polymer with 3’-OH group called 3’ end. • Thebackboneofthepolynucleotidechainissugarandphosphate. • Nitrogenbaseslinkedtothesugarmoietyprojectfromthebackbone. • InRNAeverynucleotidehasanadditional–OH group at 2’ of ribose. • InRNAUracilisfoundinplaceofthymine. • 5-methyluracilistheothernameofthymine.

  5. HistoryofDNA: • DNAisanacidicsubstanceinthenucleuswasfirstidentifiedbyFriedrichMeischerin 1869. He named it as ‘Nuclein” • 1953doublehelixstructureofDNAwasgivenbyJamesWatsonandFrancisCrick,basedonX-raydefractiondataproducedMauriceWilkinsandRosalindFranklin. • Hallmarkoftheirpropositionwasbasepairingbetweentwostrandsofpolynucleotidechains.ThiswasbasedonobservationofErwinChargaff. • Chargaff ’s observation was that for a double stranded DNA,theratiobetweenAdenineandThymine,andGuanineandCytosineareconstantandequalone.

  6. SalientfeaturesofDoublehelix structureofDNA: • Madeoftwopolynucleotidechains. • Sugarandphosphateformsthebackboneandbasesprojectedtoinside. • Twochainshaveanti-parallelpolarity. • Twostrandsareheldtogetherbyhydrogenbondpresentinbetweenbases. • AdenineofonestrandpairswithThymineofanotherstrandbytwohydrogenbondsandviceversa. • GuanineofonestrandpairswithCytosineofanotherstrandbythreehydrogenbondsand • viceversa. • Apurinecomesoppositetoapyrimidine.Thisgeneratesapproximatelyuniformdistancebetweenthetwostrandsofthehelix. • Thetwochainsarecoiledinaright– handedfashion. • Thepitchofthehelixis3.4nmor34A0 • Thereareroughly10bpinturn. • Thedistancebetweenthebpinahelixis0.34nmor3.4A0. • Theplaneofonebasepairstacksovertheotherindoublehelix. • H-bondconfersstabilityofthehelicalstructureoftheDNA. • Centraldogmaofflowofgeneticinformation:DNA→ RNA→ Protein.

  7. PackagingofDNAHelix: • Distancebetweentwoconjugativebasepairsis0.34nm,thelengthoftheDNAinatypicalmammaliancellwillbe6.6X109bpX • 0.34X10-9/bp,itcomesabout2.2meters. • ThelengthofDNAismorethanthedimensionofatypicalnucleus(10-6m),howissuchalongpolymerpackagedinacell? • Packaginginprokaryotes: • Theydonothavedefinitenucleus. • TheDNAisnotscatteredthroughoutthecell. • DNAisheldtogetherwithsomeproteinsinaregioniscalled • ‘nucleoid’. • TheDNAinnucleoidisorganizedinlargeloopsheldbeproteins.

  8. PackaginginEukaryotes: • Ineukaryotesthepackagingismorecomplex. • Thereisasetofpositivelycharged,basicproteincalledHistones. • HistonesarepositivelychargedduetorichinbasicaminoacidslikeLysinesandarginines. • Histonesareorganizedtoformaunitofeightmoleculescalledhistoneoctamere. • NegativelychargedDNAwrappedaroundpositivelychargedhistoneoctameretoformastructurecallednucleosome. • Atypicalnucleosomecontains200bpofDNAhelix. • Nucleosomeconstitutestherepeatingunitofastructureinnucleuscalledchromatin,threadlikestainedbodiesseeninthenucleus. • Thenucleosomesareseenas‘beads-on-string’ structurewhenviewedunderelectronmicroscope. • Thechromatinispackagedtoformchromatinfibersthatarefurthercoiledandcondensedatmetaphasestagetoformchromosome. • PackagingathigherlevelrequiredadditionalsetofproteinscalledNon-histoneChromosomal(NHC)proteins. • Inatypicalnucleussomelooselycoiledregionsofchromatin(lightstained)iscalledeuchromatin. • ThechromatinthatmoredenselypackedandstainsdarkarecalledHeterochromatin. • Euchromatinistranscriptionallyactivechromatinandheterochromatinisinactive.

  9. THESEARCHOF GENETICMATERIAL: Transformingprinciple: • GivenbyFrederickGriffithin1928. • HisexperimentbasedonStreptococcuspneumoniae(causedpneumonia). • Thereischangeinphysicalformofbacteria. • Therearetwocoloniesofbacteria: • SmoothshinycoloniescalledSstrain. • RoughcoloniescalledRstrain. • S-strainbacteriahaveamucous(polysaccharide)coat. • R-straindoesnothavemucouscoat. • S-strainisvirulentandcausedpneumoniainmiceanddiedwheninfected. • R-strainisnon-virulentanddoesnotcausedpneumoniainmicewheninfected. • HeatkilledS-Strainisnon-virulentanddoesnotcausespneumonia. • TheheatkilledS-StrainmixedwithliveR-Straininjectedintomice;themicedevelopedpneumoniaanddied. • HerecoveredliveS-Strainbacteriaformthedeadmice.

  10. Biochemicalcharacterizationoftransformingprinciple: • BiochemicalnatureoftransformingprinciplewasdiscoveredbyOswaldAvery,ColinMacleodandMaclynMcCarty.(1933-44) • Priortotheirworkgeneticmaterialwasthoughttobeprotein. • Theyworkedtodeterminethebiochemicalnatureofthe • ‘transforming principle’ of Griffith’s experiment. • Theypurifiedbiomolecules(proteins,DNAandRNA)fromtheheatkilledScellstoseewhichonecouldtransformliveRcellstoScells. • HeatkilledS-Strain+protease+LiveR-Strain → transformation. • HeatkilledS-Strain+RNase+LiveR-Strain → transformation. • HeatkilledS-Strain+DNase+LiveR-Strain → Notransformation.

  11. Conclusionoftheexperiments: • ProteinofheatkilledS-Strainisnotthegeneticmaterial • RNAofheatkilledS-Strainisnotthegeneticmaterial. • DNAofheatkilledS-Strainisthegeneticmaterial,becauseDNAdigestedwithDNasemixedwithR-strainunabletotransformR-StraintoS-Strain.

  12. Conclusionofexperiment: • R– StrainbacteriahadsomehowbeentransformedbytheheatkilledS-Strainbacteria. • Some‘transforming principle’,transferredfromheatkilledS-Strainbacteria,hadenabledtheR-Straintosynthesizesmoothpolysaccharidecoatandbecomevirulent(SStrain). • ThetransformationofR-StraintoS-StrainisduetotransferofGeneticmaterial. • Howeverthebiochemicalnatureofgeneticmaterialwasnot • definedfromhisexperiment

  13. TheGeneticMaterialisDNA: • ‘DNA is the genetic material’ is proved by AlfredHersheyandMarthaChase(1952). • Theyworkedonthevirusthatinfectsbacteria • calledbacteriophage. • Duringnormalinfectionthebacteriophagefirstattachesthebacteriacellwallandtheninsertsitsgeneticmaterialintothebacterialcell. • Theviralgeneticmaterialbecameintegralpartofthebacterialgenomeandsubsequentlymanufacturesmorevirusparticleusinghostmachinery. • HersheyandChaseworkedtodiscoverwhetheritwasproteinorDNAfromthevirusesthatenteredthebacteria.

  14. Experiment:(blendersexperiment) • Theygrewsomevirusesonamediumhavingradioactivephosphorusandsomeothersonmediumhavingradioactivesulfur. • VirusesgrowninradioactivePhosphorushaveradioactiveDNAbutnotradioactiveproteinbecausePhosphoruspresentinDNAnotinprotein. • VirusesgrowninradioactivesulfurhaveradioactiveproteinnotradioactiveDNAbecausesulfurpresentinproteinbutnotinDNA. • Infection:radioactivephageswereallowedtoattachtoE.colibacteria; thephagestransferthegeneticmaterialtothebacteria. • Blending:theviralcoatswereseparatedfromthebacteriasurfacebyagitatingtheminablender. • Centrifugation:Thevirusparticleswereseparatedfromthebacteriabyspinningtheminacentrifugemachine.

  15. Observation: • BacteriainfectedwithvirusesthathadradioactiveDNAwereradioactiveandnoradioactivityinthesupernatant. • Bacteriainfectedwithvirusesthathadradioactiveproteinwerenotradioactive,butradioactivityfoundinthesupernatant. • ConclusionofExperiment: • DNAistheinfectingagentthatmadethebacteriaradioactivehenceDNAisthegeneticmaterialnottheprotein.

  16. PROPOERTIESOFGENETICMATERIAL(DNAVERSUSRNA): • Criteriaforgeneticmaterial: • Itshouldbeabletogenerateitsreplica(replication) • Itshouldbechemicallyandstructurallystable. • Itshouldprovidethescopeforslowchanges(mutation)thatrequiredforevolution. • It should be able to express itself in the form of ‘Mendelian • Character’. • Proteindosenotfulfillthecriteriahenceitisnotthegeneticmaterial. • RNAandDNAfulfillthecriteria.

  17. RNAisunstable: • 2’-OHgrouppresentateverynucleotide(ribosesugar)inRNAisareactivegroupandmakesRNAliableandeasilydegradable. • RNAisalsonowknownascatalyst,hencereactive. • RNAisunstableandmutatesfaster.ConsequentlytheviruseshavingRNA • genomeandhavingshorterlifespanmutateandevolvefaster. • DNAismorestable: • StabilityasoneofthepropertiesofgeneticmaterialwasveryevidentinGriffith’s ‘transforming principle’ itself that heat, which killed the bacteria at leastdidnotdestroysomeofthepropertiesofgeneticmaterial. • Twostrandsbeingcomplementaryifseparatedbyheatingcometogether,whenappropriateconditionsareprovided. • PresenceofThymineinplaceofuracilconfersadditionalstabilitytoDNA • DNAischemicallylessreactiveandstructurallymorestablewhencomparedtoRNA. • ThereforeamongthetwonucleicacidstheDNAisabettergeneticmaterial.

  18. Bettergeneticmaterial(DNAorRNA) • PresenceofthymineattheplaceofuracilconfersmorestabilitytoDNA. • BothDNAandRNAareabletomutate. • InfactRNAbeingunstablemutateatafasterrate. • RNAcandirectlycodeforthesynthesisofproteins,henceeasilyexpress. • DNAhoweverdependsonRNAforproteinsynthesis. • TheproteinsynthesismachineryhasevolvedaroundRNA. • BothRNAandDNAcanfunctionsasgeneticmaterial,butDNAbeingmorestableispreferredforstorageofgeneticinformation. • ForthetransmissionofgeneticinformationRNAisbetter.

  19. RNAWORLD: • RNAisthefirstgeneticmaterial. • EssentiallifeprocessesevolvedaroundRNA. • RNAusedtoactasageneticmaterialaswellascatalyst. • ButRNAbeingcatalystwasreactiveandhenceunstable. • HenceDNAhasevolvedfromRNAwithchemical • modificationsthatmakeitmorestable. • DNAbeingdoublestrandedandhavingcomplementarystrandfurtherresistschangesbyevolvingaprocessofrepair.

  20. TypesofRNA: • InprokaryotestherearethreemajortypesofRNAs:mRNA(messenger),tRNA(transfer),andrRNA(ribosomal). • AllthreeRNAsarerequiredtosynthesizeproteininacell. • ThemRNAprovidesthetemplateandhavinggeneticinformationintheformofgeneticcode. • ThetRNAbringstheaminoacidsandreadthegeneticcode • ofmRNA. • TherRNAisthestructuralpartoftheribosomeandalsoascatalyticroleduringprocessoftranslation

  21. REPLICATION:THEPROCESS: • WatsonandCrickproposedaschemeforreplicationofDNA. • The Original statement that “It has not escaped our notice that the specificpairingwehavepostulatedimmediatelysuggestsapossiblecopyingmechanismforthegeneticmaterial(WatsonandCrick,1953) • Theschemesuggestedthatthetwostrandswouldseparateandactastemplateforthesynthesisofnewcomplementarystrands. • NewDNAmoleculemusthaveoneparentalstrandandonenewstrand. • ThisschemeofreplicationiscalledSemiconservativetypeofreplication.

  22. ExperimentalProofofsemiconservativenatureofreplication: • Itisnowprovedexperimentallythatreplicationissemiconservativetype. • ItwasfirstshowninEscherichiacoliandsubsequentlyinhigherorganism. • MathewMesselsonandFranklinStahlperformedthefollowingexperimentin1958.

  23. STEPSOFTHEEXPERIMENTS: • TheygrewE.coliin15NH4Clmediumformanygenerations.(15Nisheavynitrogennotradioactiveelement) • Theresultwasthat15NwasincorporatedintonewlysynthesizedDNAandothernitrogencontainingcompoundas • well. • ThisheavyDNAmoleculecouldbedistinguishedfromnormalDNAbycentrifugationinacesiumchloride(CsCl)densitygradient. • ThentheytransferredtheE.coliintoamediumwithnormal14NH4Clandletthemgrow.(E.colidividesin20minutes) • Theytooksamplesatdefinitetimeintervalsasthecellsmultiplied,and • extractedtheDNAthatremainedasdouble-strandedhelices. • VarioussampleswereseparatedindependentlyonCsClgradientstomeasurethedensitiesofDNA. • TheDNAthatwasextractedfromthecultureonegenerationafterthetransferfrom15Nto14Nmediumhadahybridorintermediatedensity. • DNAextractedfromthecultureafteranothergeneration(after40min.) • was composed of equal amount of this hybrid DNA and of ‘light ‘DNA.

  24. ExperimentbyTaylorandcolleagues: • UsedradioactivethymidinetodetectdistributionofnewlysynthesizedDNAinthechromosomes. • TheyperformedtheexperimentonViciafaba(fababeans)in1958. • TheyprovedthesemiconservativenatureofDNAreplication ineukaryotes

  25. ReplicationMachineryandEnzymes: • InalllivingcellssuchasE.colireplicationrequiresasetofenzymes. • E.colicompletesthereplicationofitsDNAinwithin38min. • Theaveragerateofpolymerizationhastobeapprox.2000bppersec. • Thepolymerizationprocessmustbeaccurate;anymistakeduringreplicationwouldresultintomutation. • Deoxyribonucleosidetriphosphates(dATP,dGTP,dCTP,dTTP)servedualpurposes: • Provideenergyforpolymerization. • Actsassubstratesforpolymerization. • ThereplicationprocessoccurswithinasmallopeningoftheDNAhelixcalledreplicationfork. • Theregionwhere,replicationforkformediscalledoriginofreplication. • Thereplicationforkisformedbyanenzymecalledhelicase.

  26. Twoseparatedstrandiscalledtemplatestrands. • MainenzymeisDNA-dependentDNApolymerase,sinceitusesaDNAtemplatetocatalyzethepolymerizationofdeoxyribonucleotides. • DNApolymerasecatalysespolymerizationonlyinonedirection • i.e.5’→3’. • On one strand (template with 3’→5’ polarity) the replication is • continuoushencecalledleadingstrand. • In another strand (template with 5’→3’ polarity) the polymerization • takesplaceintheformofshortfragmentcalledOkazakifragment. • TheshortfragmentsarejoinedbyDNAligase,hencecalledlaggingstrand. • IneukaryotesreplicationtakesplaceinS-phaseofcellcycle. • Afailureofcytokinesisafterreplicationresultsintopolyploidy.

  27. TRANSCRIPTION: • ‘The process of copying genetic information from one strand of the DNA into RNA is termed as transcription’. • Transcriptionvs.Replication: • PrincipleofcomplementaritygovernstheprocessoftranscriptionexceptAdenosineofDNAformsbasepairwiththeUracilinsteadofthymine.DuringreplicationAdeninepairswiththymineinsteadofuracil. • DuringreplicationoncestartedthewholeDNAisduplicated, • whereastranscriptiontakesplaceonlyasegmentofDNA. • Inreplicationbothstrandactsastemplate,whereasintranscriptiononlyonestrandisactsastemplatetosynthesizeRNA. • InreplicationDNAcopiedfromaDNA,whereasin • transcriptionRNAcopiedfromtheDNA.

  28. WhybothstrandsofDNAnotcopied duringtranscription: • IfbothstrandofDNAactsastemplate,theywouldtranslatedintotwoRNAofdifferentsequencesandinturniftheycodeforproteins,thesequenceofaminoacidsintheproteinwouldbedifferent.HenceonesegmentofDNAwouldbecodingfortwodifferentproteins. • ThetwoRNAmoleculesifproducedfromsimultaneouslywouldbecomplementarytoeachother,hencewillformdoublestrandedRNA.ThiswouldpreventRNAtranslationintoprotein.

  29. Transcriptionunit: • AtranscriptionunitinDNAconsistsofthreeregions: • Apromoter • Thestructuralgene • Aterminator. • DNAdependentRNApolymerasecatalysesthepolymerizationin • onlyone directionthat is5’→3’.

  30. Structuralgene: • TheDNAstrandhavingpolarity3’→5’ iscalledtemplatestrandfortranscription. • TheotherstrandofDNAhavingpolarity5’→3’ iscalledcodingstrand. • ThesequencesofnitrogenbaseintheRNAtranscribedfromthetemplatestrandaresameasthecodingstrandofDNAexcepthavingThymineinplaceofUracil. • Allthereferencepointdefiningatranscriptionunitismadewiththecodingstrandonly,notthetemplatestrand.

  31. PromoterandTerminatorpresentoneithersideofstructuralgene. • The promoter located towards 5’ end (upstream)ofthestructuralgene. • ItisashortsequenceofDNAthatprovidesbindingsiteforRNA • polymerase.(mostlyTATA,CommonlycalledTATAbox) • Presenceofthepromoterdefinesthetemplateandcodingstrands. • Ifthepositionofpromoterischangedwithterminatorthedefinitionofcodingandtemplatestrandwillbereversed. • Terminator: • Theterminatorlocated towards 3’ end (downstream)ofcodingstrand. • Itterminatestheprocessoftranscription. • ItisalsoashortsegmentofDNAwhichrecognizestheterminationfactor.(ρ-factor)

  32. Transcriptionunitandthegene: • Geneisdefinedasthefunctionalunitofinheritance. • GenesarelocatedontheDNA. • TheDNAsequencecodingfortRNAandrRNAmoleculealsodefineagene. • Cistron:asegmentofDNA(structuralgene)codingforapolypeptide. • Monocistronic:mostofeukaryoticstructuralgenecodesforsinglepolypeptide. • Polycistronic:Mostprokaryoticstructuralgenecodeformorethanonepolypeptides. • Ineukaryotesthemonocistronicstructuralgenshaveinterruptedcoding • sequences,thegenesaresaidtobesplitgene: • ThecodingsequencesorexpressedsequencesarecalledExons. • ExonsareinterruptedbyIntrons. • Exonsaresaidtobethosesequencesthatappearinmatureorprocessed • mRNA. • IntronsneverappearinmatureofprocessedmRNA.Theyaresplicedout

  33. Processoftranscription:prokaryotes. • ThereisasingleDNAdependentRNApolymerasethatcatalysestranscriptionorsynthesisofallthreetypesofRNAsinprokaryotes. • Theprocessoftranscriptioncompletedinthreesteps: • Initiation: • RNApolymerasebindstothespecificsiteofDNAcalledpromoter. • PromoteroftheDNAisrecognizedbyinitiationfactororsigma(σ). • RNApolymerasealongwithinitiationfactorbindstothepromoter. • Elongation: • RNApolymeraseunzippedtheDNAdoublehelixandformsanopenloop. • ItusesribonucleosidetriphosphatesassubstrateandpolymerizesinaDNAtemplatefollowingtheruleofcomplementarity. • OnlyashortstretchofpolymerizedRNAremainsbindswiththeenzyme. • Theprocessofpolymerizationcontinuedtilltheenzymereachestheterminatorgene. • Termination: • RNApolymeraserecognizestheterminatorgenebyatermination-factorcalledrho(ρ) • factor. • TheRNApolymeraseseparatedfromtheDNAandalsothetranscribedRNA.

  34. Additionalcomplexitiesineukaryotes: • TherearethreedifferenttypesofRNApolymerasesinthenucleus: • RNApolymeraseItranscribesrRNA(28S,18S,and5.8S) • RNApolymeraseIItranscribesheterogeneousnuclearRNA(hnRNA). • RNApolymeraseIIItranscribestRNA,5srRNAandsnRNA. • Posttranscriptionalprocessing:(occursinsidethenucleus) • (a)Splicing: • Theprimarytranscript(hnRNA)containbothexonsandintronsandrequiredtobeprocessedbeforetranslationallyactive(mRNA). • Theintronsareremovedandexonsarejoinedinadefinedorder. • ThisprocessiscatalyzedbySnRNP,intronsremovedasspliceosome. • (b)Capping:anunusualnucleotidecalledmethylguanosinetriphosphateis added to the 5’ end of hnRNA. • (c)Tailing:Adenylateresidues(200-300) are added at 3’ end of hnRNAinatemplateindependentmanner. • TheprocessedhnRNAisnowcalledmRNAandtransportedoutofthe • nucleusfortranslation.

  35. GENETICCODE: • Contributiontodiscovery: • Theprocessofreplicationandtranscriptionbasedoncomplementarity. • Theprocessoftranslationisthetransferofgeneticinformationformapolymerofnucleotidestoapolymerofaminoacids.Thereisnocomplementarityexistbetweennucleotidesandaminoacids. • Ifthereischangeinthenucleicacid(geneticmaterial)thereischangeinaminoacidsinproteins. • Theremustbeageneticcodethatcoulddirectthesequenceofaminoacidsinproteinsduringtranslation. • GeorgeGamowproposedthecodeshouldbecombinationofbases,hesuggestedthatin • ordertocodeforallthe20aminoacids,thecodeshouldbemadeupofthreenucleotides. • HarGovindKhoranaenablesinstrumentalsynthesizingRNAmoleculeswithdesiredcombinationsofbases(homopolymerandcopolymers). • Marshall Nirenberg’s cell– freesystemforproteinsynthesisfinallyhelpedthediscoveryofgeneticcode. • SeveroOchoaenzyme(polynucleotidephosphorylase)wasalsohelpfulinpolymerizingRNAwithdesiredsequencesinatemplateindependentmanner(enzymaticsynthesisofRNA)

  36. Salientfeaturesofgeneticcode: • Thecodonistriplet.Threenitrogenbasesequencesconstituteonecodon. • Thereare64codon,61codesforaminoacidsand3codonsarestopcodon. • Onecodoncodesforonlyoneaminoacid,henceitisunambiguous. • Degeneracy:someaminoacidsarecodedbymorethanonecodon. • Commaless:thecodonisreadinmRNAinacontinuousfashion.Thereisnopunctuation. • Universal:FrombacteriatohumanUUUcodesforphenylalanine. • Initiationcodon:AUGisthefirstcodonofallmRNA.Andalsoitcodesformethionine(met),hencehasdualfunction. • Non-overlapping:Thegeneticcodereadslinearly • Direction:thecodeonlyreadin5’ → 3’ direction. • Anticodon:EachcodonhasacomplementaryanticodonontRNA. • Non-sensecodon:UAA,GUA,andUAGdonotcodeforaminoacidandhas • noanticodononthetRNA.

  37. MutationandGeneticcode: • RelationshipbetweenDNAandgenesarebestunderstoodbymutation. • Pointmutation: • Itoccursduetoreplacementnitrogenbasewithinthegene. • Itonlyaffectsthechangeofparticularaminoacid. • Bestunderstoodthecauseofsicklecellanemia. • Frameshiftmutation: • Itoccursduetoinsertionordeletionofoneormorenitrogenbasesinthegene. • Thereischangeinwholesequenceofaminoacidfromthepointofinsertionordeletion. • Bestunderstoodinβ-thalasemia.

  38. tRNA-theAdaptormolecule: • ThetRNAiscalledsRNA(solubleRNA) • Itactsasanadaptermolecule. • tRNAhasananticodonloopthatbase • complementarytothecodon. • Ithasanaminoacidaccepterendtowhichitbindswithaminoacid. • EachtRNAbindwithspecificaminoacidi.e61typesoftRNAfound. • OnespecifictRNAwithanticodonUACcalledinitiatortRNA. • ThereisnotRNAforstopcodons.(UAA,UGA,UAG) • Thesecondarystructureislikeclover-leaf. • TheactualstructureoftRNAiscompact,looks • like inverted ‘L’.

  39. TRANSLATION: • Itreferstopolymerizationofaminoacidstoformapolypeptide. • Thenumberandsequenceofaminoacidsaredefinedbythe • sequenceofbasesinthemRNA. • Theaminoacidsarejoinedbypeptidebond. • AminoacidsareactivatedinthepresenceofATPandlinkedtotheirspecifictRNAiscalledchargingof • tRNAoraminoacylationoftRNA. • Ribosomeisthecellularfactoryforproteinsynthesis. • RibosomeconsistsofstructuralrRNAand80differentproteins. • Ininactivestateribosome(70S)presentintwosubunits:- • Alargesubunit50S. • Asmallsubunit30S.

  40. Initiation: • TheprocessoftranslationorproteinsynthesisbeginswithattachmentofmRNAwithsmallsubunitofribosome. • TheribosomebindstothemRNAatthestartcodon(AUG). • AUGisrecognizedbytheinitiatortRNA. • Elongation: • Largersubunitattachedwiththeinitiationcomplex. • Larger subunit has two site ‘A’ site and ‘P’ site. • InitiatortRNAaccommodated in ‘P’ site of large subunit, the subsequent • amino-acyl-tRNAenters into the ‘A’ site. • ThesubsubsequenttRNAselectedaccordingtothecodonofthemRNA. • CodonofmRNAandanticodonoftRNAarecomplementarytoeachother. • Formation of peptide bond between two amino acids of ‘P’ and‘A’ site, • catalyzedbyribozyme,(23SrRNAinbacteria) • ThemovesfromcodontocodonalongthemRNAcalledtranslocation.

  41. Termination: • Elongationcontinuesuntilastopcodonarrives at ‘P’ site. • ThereisnotRNAforstopcodon. • Areleasefactorbindstothestopcodon. • Furthershiftingofribosomeleadstoseparationofpolypeptide. • AnmRNAalsohassomeadditionalsequencesthatarenot • translatedcalleduntranslatedregions(UTR).

More Related