480 likes | 589 Views
Numerical simulations of photospheric emission from variable jets. Diego Lopez-Camara (NCSU) Davide Lazzati (NCSU) Brian Morsony (UWM). 0 / 12. Numerical simulations of photospheric emission from variable jets. Diego Lopez-Camara (NCSU) Davide Lazzati (NCSU) Brian Morsony (UWM). 0 / 12.
E N D
Numerical simulations of photospheric emission from variable jets Diego Lopez-Camara (NCSU) Davide Lazzati (NCSU) Brian Morsony (UWM) 0 / 12
Numerical simulations of photospheric emission from variable jets Diego Lopez-Camara (NCSU) Davide Lazzati (NCSU) Brian Morsony (UWM) 0 / 12
3D AMR simulations of long-GRBs jets inside massive progenitor stars Diego Lopez-Camara (NCSU) Davide Lazzati (NCSU) Brian Morsony (UWM) Mitch Begelman (JILA) (DLC, BM, MB, DL, ApJ, 2013) 0 / 12
3D AMR simulations of long-GRBs jets inside massive progenitor stars Diego Lopez-Camara (NCSU) Davide Lazzati (NCSU) Brian Morsony (UWM) Mitch Begelman (JILA) Representing the minority. (not the latino) … GRBs (DLC, BM, MB, DL, ApJ, 2013) 0 / 12
1.1/3 GRBs (all different, but…) GRB - SN same location… GRB980425 - SN1998bw SN (Galama, et al., 1998) 1 / 12
1.2/3 SNIb( 30 days) GRBs (all different, but…) GRB - SN same location… Spectrum GRB980425 - SN1998bw GRB030329 (Hjorth et al., 2003) GRB GRB980425 (Galama et al., 1998) SN (Galama, et al., 1998) 1 / 12
1.3/3 SNIb( 30 days) GRBs (all different, but…) Light curve GRB - SN same location… Spectrum GRB980425 - SN1998bw GRB GRB030329 (Hjorth et al., 2003) GRB (Castro Tirado et al., 2001) GRB980425 (Galama et al., 1998) SN (Galama, et al., 1998) SN 1 / 12
2.1/2 GRBs(GRB-SN association) Same location. Spectroscopic. Light curve. Collapsar model (for some of the long GRBs) 2 / 12
2.2/2 Collapsar (in a nutshell) He C Ne O Si Fe 2 / 12
Collapsar (motivation) Focusing on this part… (jet vs progenitor) 3 / 12
Collapsar(motivation) 2D Simulations: (MacFadyen & Woosley 1999; Aloy et al. 2000; MacFadyen et al. 2001; Zhang et al. 2003; Mizuta et al. 2006; Morsony et al. 2007, 2010; Lazzati et al. 2009, 2010, 2011; Nagakura et al. 2011) Imposed symmetry evident. No 3D instabilities can form (RT). Only two previous 3D studies: Only the stellar cortex (Ri ≈ 1010 cm ; ΔM ≈ 3 M) (Zhang et al. 2003) No convergence wrt resolution (Wang et al. 2008) This part needs to be fully understood 4 / 12
Our model (DLC+BM+MB+DL, ApJ, 2013) 3D non symmetric jet - realistic progenitor - ISM Keep in mind: No rotation. No self-gravity. No B field. 2. 2. 1. Progenitor. 16TI (W&H 2006) Jet. L = 5.33 x 1050 erg s-1 Ri = 109 cm θ0 = 10° Γ0 = 5 Γ∞ = 400 3. ρISM = (10-13 g cm-3) Keep in mind: No progenitor rotation. No self-gravity. No magnetic fields. 5 / 12
Results (3D density stratification) (http://www4.ncsu.edu/~dlopezc/Simulations_(published)_files/f1a.mov) 6 / 12
7.1/2 Results (3D density stratification) Low density jet. Breaks out of the star. Cocoon. 7 / 12
7.2/2 Results (3D density isocontours) Low density jet. Breaks out of the star. Cocoon. 2 phases. tbo = 4.2 s pre-tbo vjet ≈ 0.32 c post-tbo vjet ≈ 0.99 c 7 / 12
Results (Lorentz factor stratification) pre-tbo Jet is ~relativistic. Γjet ≈ 1-10 post-tbo Jet is ultra-relativistic. Γjet ≈ 50 (http://www4.ncsu.edu/~dlopezc/Simulations_(published)_files/f7.mov) 8 / 12
9.1/2 Results (HR vs LR) Low density jet. Breaks out of the star. Cocoon. 2 phases. No mayor dif LR-HR. LR HR 9 / 12
9.2/2 Results (HR vs LR) Low density jet. Breaks out of the star. Cocoon. 2 phases. No mayor dif LR-HR. LR HR: More turbulence. Slower jet. tbo-HR = 5.7 s vjet-HR≈ 0.24 c HR 9 / 12
10.1/2 Results (2D vs 3D) Low density jet. Breaks out of the star. Cocoon. 2 phases. 2D 3D 10 / 12
10.2/2 Results (2D vs 3D) Low density jet. Breaks out of the star. Cocoon. 2 phases. 2D • 2D: • Symmetry evident. • density plumes. • Slower in 2D. tbo-2D = 7.0 s vjet-2D≈ 0.19 c 3D 10 / 12
Results (2D vs 3D) Low density jet. Breaks out of the star. Cocoon. 2 phases. 3D jet finds the least resistive path. (2D jet does not) • 2D: • Symmetry evident. • density plumes. • Slower in 2D. tbo-2D = 7.0 s vjet-2D≈ 0.19 c 11 / 12
12.1/2 Conclusions • Low density jet breaks out. • 2 phases (pre-tbo , & post-tbo). t < tboΓjet ≈ 1 ; t > tboΓjet ≈ 50. • HR same behavior but has more turbulence and the jet is slower. • 2D same behavior but axis-symmetric is evident and the jet is slower. • 3D jet find the least resistive path. 12 / 12
12.2/2 Conclusions • Low density jet breaks out. • 2 phases (pre-tbo , & post-tbo). t < tboΓjet ≈ 1 ; t > tboΓjet ≈ 50. • HR same behavior but has more turbulence and the jet is slower. • 2D same behavior but axis-symmetric is evident and the jet is slower. • 3D jet find the least resistive path. • Not a minority… happy to see that the numerical sims in the SN community is big! (Lamb, Nagataki, Morsony, Giacomazzo, Townsley, Roepke, Couch, Mezzacappa, Abdikamalov, Mueller, Katz, Jacobs, Irwin, Zingale, Goodson, Tsebrenko…) 12 / 12
Limitations • Star is static. Must include J(R) from W&H16TI. τdin ≈ 2 h vs tsims = 20 s • L = constant. (include L variable) • ISM density constant (collapsar winds give a ρISM ≈ R-2 profile) Jet is ultra-relativistic so ISM effects are very small. • P = k ρ4\3Radiation, ions, electrons, positrons, neutrinos. Helmholtz EOS. • No self-gravity. (τdin ≈ 2 h vs tsims = 20 s) • No relativistic effects from the BH Rin = 103 Rg • Magnetic effects.
Results (symmetry break) Why does the asymmetry form? Since jet is launched Jet-envelope effect ρ from same solid angle, but different radial paths. ρ (R , θ = θ0 , φ )
…Results (symmetry break) t < tbo t = tbo
…Results (symmetry break) Forward and reverse shock
…Results (symmetry break) Forward and reverse shock Shocked material is not symmetric. Asymmetries: jet-envelope consequence.
Previous studies (Zhang et al. 2003) 2D jet moving through the progenitor. Jet. L = (0.3 ; 1) x 1051 erg s-1 θ0 = 5° ; 10° Γ0 = 5 ; 50 f0 = 0.025 ; 0.33 Keep in mind: Rin ≈ 2 x 108 cm. Δ ≈ 108 cm. No progenitor rotation. No self-gravity. No magnetic fields. Progenitor. 15 Mo (HL&W 2000) 2 Mo Iron core (BH) Polytrope EOS (P = k ρ4\3). Zhang et al. 2003 movie ISM ρISM ≈ R-2 9 / 30
…Previous studies (Zhang et al. 2003) L = 1051 erg s-1 ; θ0 = 10° ; Γ0 = 50 ; f0 = 0.33 Jet breaks out of the star. Gamma up to 150. But this is 2D… 10 / 30
Previous studies (Zhang et al. 2004) 3D jet moving through the progenitor. Jet. L = 3 x 1050 erg s-1 θ0 = 5° Γ0 = 5 f0 = 0.40 Keep in mind: No progenitor rotation. No self-gravity. No magnetic fields. Progenitor. 15 Mo (W&H 2003) 2 Mo Iron core (BH) Polytrope EOS (P = k ρ4\3). Zhang et al. 2004 movie ISM ρISM ≈ R-2 11 / 30
…Previous studies (Zhang et al. 2004) Different asymmetries imposed & precessing jet… Jet breaks out of the star. Asymmetries present. Gamma up to 20. But… Rin = 1010 cm (≈11 M0) Δ ≈ 108 cm No more analysis. 12 / 30
Previous studies (Wang et al. 2008) 3D jet moving through the progenitor. Jet. L = 3 x 1050 erg s-1 θ0 = 5° Γ0 = 5 f0 = 0.40 Keep in mind: No progenitor rotation. No self-gravity. No magnetic fields. Progenitor. 16 Mo (HE16TA W&H 2006) 1.7 Mo Iron core (BH) Polytrope EOS (P = k ρ4\3). ISM ρISM ≈ R-2 13 / 30
…Previous studies (Wang et al. 2008) LR vs HR Jet breaks out of the star. Asymmetries present. But… Rin = 5x109 cm (≈9 M0) Δ ≈ 108 cm Not convergent. No further analysis. 14 / 30
Progenitors (example: 16TI) Fe 0.8 O 0.6 Si fraction 0.4 S Cr 0.2 Ni Ar Mg Ca 10 7 8 9 log[R (cm)]
Progenitors (example: 16TI) 18 Angular momentum powers the GRB 17 J(R)LSO-Shw log[J (cm2 s-1)] 16 J(R)16TI 15 8 10 9 7 log[R (cm)]
…GRB - SN (spectroscopic) GRB980425 + SN1998bw (Galama et al., 1998) GRB030329 + SN2003dh (Hjorth et al., 2003, Stanek et al., 2003) XRF020903 + SN1998bw type (Soderberg et al., 2004) GRB021211 + SN2002lt (Della Valle et al., 2003) GRB031203 + SN2003lw(Malesani et al., 2004) GRB050525a + SN2005nc(Della Valle et al., 2006a) GRB060218 + SN2006aj (Campana et al., 2006; Pian et al., 2006). 8. GRB081007 + SN2008hw (Della Valle et al., 2008). 9. GRB091127 + SN2009nz (Berger et al., 2011). 10. XRF100316D + SN2010bh (Olivares et al., 2011). GRB030329 (Hjorth et al., 2003) GRB980425 (Galama et al., 1998) 12 / 32
…GRB - SN (light curve) GRB 980326 + SN1998bw type(Castro Tirado et al., 2001) GRB970228 + SN1998bw type (Reichart, 1999) GRB011121 + SN1998bw type (Bloom et al., 1999) GRB020405 + SN1998bw type(Price et al., 2003) GRB040924 + SN1998bw type(Soderberg et al., 2006) GRB041006 + SN1998bw type(Stanek et al., 2005; Soderberg et al., 2006) GRB050824 +SN2006aj type(Sollerman et al., 2007) GRB060729 + SN2010bh type(Cano et al., 2011) GRB090618 + SN2010bh type(Cano et al., 2011) (Castro Tirado et al., 2001) (Reichart, 1999)