1 / 52

Ashley M. Berman

Transition-Metal Catalyzed Asymmetric Conjugate Addition of Organometallic Reagents. Ashley M. Berman. Introduction to the Asymmetric Conjugate Addition (ACA) of Organometallic Reagents. Powerful tool for the construction of C-C bonds

johana
Download Presentation

Ashley M. Berman

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transition-Metal Catalyzed Asymmetric Conjugate Addition of Organometallic Reagents Ashley M. Berman

  2. Introduction to the Asymmetric Conjugate Addition (ACA) of Organometallic Reagents • Powerful tool for the construction of C-C bonds • Wide availability of Michael acceptors and organometallic reagents • Possibility to set multiple stereocenters in a single synthetic operation Pertinent Reviews: 1) Rossiter, B. E.; Swingle, N. Chem. Rev.1992, 92, 771. 2) Sibi, M. P.; Manyem, S. Tetrahedron2000, 56, 8033. 3) Krause, N.; Hoffmann-Röder, A. Synthesis2001, 2, 171. 4) Hayashi, T.; Yamasaki, K. Chem. Rev.2003, 103, 2829.

  3. A. Covalently Bound Chiral Auxiliaries Strategies for ACA Oppolzer, W.; Poli, G.; Kingma, A.; Starkemann, C.; Bernardinelli, G. Helv. Chim. Acta.1987, 70, 2201.

  4. B. Heterocuprates Preparation of Heterocuprates Corey, E. J.; Naef, R.; Hannon, F. J. J. Am. Chem. Soc.1986, 108, 7114.

  5. C. External Chiral Ligands Organocuprates RLi 1) Kanai, M.; Tomioko, K. TetrahedronLett.1994, 35, 895. 2) Asano, Y.; Iida, A.; Tomioko, K. Tetrahedron Lett.1997, 38, 8973.

  6. D. Transition-Metal Catalysis Cu/RMgX Catalytic System Strangeland, E. L.; Sammakia, T. Tetrahedron1997, 53, 16503.

  7. The Cu/R2Zn and Rh/RB(OH)2 catalytic systems have been the most thoroughly examined • These systems offer complimentary methods to 1,4 adducts

  8. The Cu/R2Zn Catalytic System A. Mechanistic Considerations

  9. Theoretical analysis of R2CuLi·LiCl conjugate addition FMO Interaction Nakamura, E.; Mori, S. Angew. Chem. Int. Ed.2000, 39, 3750.

  10. B. Ligand Development Pertinent Review: Alexakis, A.; Benhaim, C. Eur. J. Org. Chem.2002, 3221.

  11. 1. Trivalent Phosphorus Ligands Feringa’s Phosphoramidites De Vries, A. H. M; Meetsma, A.; Feringa, B. L. Angew. Chem. Int. Ed.1996, 35, 2374.

  12. 1) Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A. H. M.. Angew. Chem. Int. Ed.1997, 36, 2620. 2) Feringa, B. L. Acc. Chem. Res.2000, 33, 346.

  13. Ligands for ACA to cyclopentenone 1) Mandoli, A.; Arnold, L. A.; Salvadori, P.; Feringa, B. L. Tetrahedron Asymmetry2001, 12, 1929. 2) Escher, I. H.; Pfaltz, A. Tetrahedron2000, 56, 2879. 3) Liang, L.; Au-Yeung, T. L.; Chan, A. S. Org. Lett.2002, 4, 3799.

  14. TADDOL Derived Ligands Alexakis, A.; Burton, J.; Vastra, J.; Benhaim, C.; et. al. Eur. J. Org. Chem.2000, 4011.

  15. Miscellaneous Phosphorus Ligands 1) Reetz, M. T.; Gosberg, A.; Moulin, D. Tetrahedron Lett.2002, 43, 1189. 2) Yamanoi, Y.; Imamoto, T. J. Org. Chem. 1999, 64, 2988.

  16. 2. Peptide-Based Ligands Ligand for ACA to aliphatic enones (a) Absolute configuration not determined Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem. Soc.2002, 124, 779.

  17. Ligand for ACA to Cyclic Trisubstituted Enones (a) Following base induced isomerization of 1,4 adduct Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem. Soc.2002, 124, 13362.

  18. Other Peptide-Based Ligands Developed by Hoveyda 1) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc.2001, 123, 755. 2) Hird, A. W.; Hoveyda, A. H. Angew. Chem. Int. Ed.2003, 42, 1276.

  19. C. ACA to other Michael Acceptors 1. Nitroalkenes (Acyclic Substrates) Duursma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc.2003, 125, 3700.

  20. Conversion of 1,4 adducts into versatile chiral building blocks Duursma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc.2003, 125, 3700.

  21. Cyclic Substrates (a) Base induced isomerization to anti 1,4 adduct proceeds without lowering of enantiomeric excess Luchaco-Cullis, C. A.; Hoveyda, A. H. J. Am. Chem. Soc.2002, 124, 8192.

  22. Cyclic Substrates (continued) Luchaco-Cullis, C. A.; Hoveyda, A. H. J. Am. Chem. Soc.2002, 124, 8192.

  23. 2. N-Acyloxazolidinones Hird, A. W.; Hoveyda, A. H. Angew. Chem. Int. Ed.2003, 42, 1276.

  24. N-Acyloxazolidinones (continued) Hird, A. W.; Hoveyda, A. H. Angew. Chem. Int. Ed.2003, 42, 1276.

  25. D. Tandem Reactions • Following ACA, a chiral zinc enolate is generated • While commonly quenched with H2O, this enolate can likewise be trapped with other electrophiles

  26. 1. Alkylation of Zinc Enolates Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem. Soc.2002, 124, 779.

  27. Alkylation of Zinc Enolates - Application in the Enantioselective Synthesis of Clavularin B Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc.2001, 123, 755.

  28. 2. Allylation of Zinc Enolates Naasz, R.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Chem. Commun.2001, 735.

  29. 3. Silylation of Zinc Enolates Knopff, O.; Alexakis, A. Org. Lett.2002, 4, 3835.

  30. 4. Tandem 1,4 Addition/Aldol Reaction Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem.2002, 67, 7244.

  31. Application in the Enantioselective Synthesis of (-) Prostaglandin E1 Methyl Ester Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem.2002, 67, 7244.

  32. The Rh/RB(OH)2 Catalytic System A. Mechanistic Considerations

  33. Preparation of Key Intermediates in Catalytic Cycle Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc.2002, 124, 5052.

  34. Model of Stereoinduction (BINAP System) Takaya, Y.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc.1998, 120, 5579.

  35. B. Ligand Development 1) Reetz, M. T.; Moulin, D.; Gosberg, A. Org. Lett.2001, 3, 4083. 2) Boiteau, J.; Imbos, R.; Minnaard, A. J.; Feringa, B. L. Org. Lett.2003, 5, 681. 3) Kuriyama, M.; Nagai, K.; Yamada, K.; Miwa, Y.; Taga, T.; Tomioko, K. J. Am. Chem. Soc.2002, 124, 8932. 4) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K.; J. Am. Chem. Soc.2003, 125, 11508.

  36. C. ACA to Enones Takaya, Y.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc.1998, 120, 5579.

  37. Other cyclic enones Acyclic enones Takaya, Y.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc.1998, 120, 5579.

  38. D. ACA to other Michael Acceptors 1. Nitroalkenes (Cyclic Substrates) Hayashi, T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc.2000, 122, 10716.

  39. Acyclic substrates Hayashi, T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc.2000, 122, 10716.

  40. Conversion of 1,4 adducts into versatile chiral building blocks Hayashi, T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc.2000, 122, 10716.

  41. 2. 1-Alkenylphosphonates Conversion to Optically Active Alkenes Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc.1999, 121, 11591.

  42. 3. ,-Unsaturated Esters Takaya, Y.; Senda, T.; Kurushima, H.; Ogasawara, M.; Hayashi, T. Tetrahedron Asymmetry1999, 10, 4047.

  43. 4. ,-Unsaturated Amides Sakuma, S.; Miyaura, N. J. Org. Chem.2001, 66, 8944.

  44. Enantioselective Synthesis of 4-Aryl-2-Piperidinones Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem.2001, 66, 6852.

  45. E. ACA in the Absence of Water; Chiral Boron Enolates Yoshida, K.; Ogasawara, M.; Hayashi, T. J. Org. Chem.2003, 68, 1901.

  46. Mechanistic Considerations Yoshida, K.; Ogasawara, M.; Hayashi, T. J. Org. Chem.2003, 68, 1901.

  47. Chiral Titanium Enolates Hayashi, T.; Tokunaga, N.; Yoshida, K.; Han, J. W. J. Am. Chem. Soc.2002,124, 12102.

  48. Titanium Enolates (continued) Hayashi, T.; Tokunaga, N.; Yoshida, K.; Han, J. W. J. Am. Chem. Soc.2002,124, 12102.

  49. Conclusion • Numerous strategies have been developed for the ACA of organometallic reagents, including transition-metal catalysis • The Cu/R2Zn and Rh/RB(OH)2 catalytic systems offer complimentary methods to 1,4 adducts

More Related