1 / 40

RAY ALVARADO, P.E.

PROCESS ENGINEERING PIPING ENGINEERING PIPELINE ENGINEERING. RAY ALVARADO, P.E. Member, Mapua Alumni Association Alberta Chapter. Presentation Breakdown. INTRODUCTION PROCESS ENGINEERING PIPING ENGINEERING. PIPELINE ENGINEERING. Acronyms. CAE – Computer Aided Engineering

joie
Download Presentation

RAY ALVARADO, P.E.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PROCESS ENGINEERING PIPING ENGINEERING PIPELINE ENGINEERING RAY ALVARADO, P.E. Member, Mapua Alumni Association Alberta Chapter

  2. Presentation Breakdown • INTRODUCTION • PROCESS ENGINEERING • PIPING ENGINEERING • PIPELINE ENGINEERING

  3. Acronyms • CAE – Computer Aided Engineering • CAD – Computer Aided Design • HMB – Heat and Mass Balance, a Process activity • CFD – Computational Fluid Dynamics • FEA – Finite Element Analysis • PFD – Process Flow Diagram • P&ID – Piping and Instrumentation Diagram • LDT – Line Designation Table • ROW – Right of Way, for pipeline routing • HDD – Horizontal Directional Drilling, for pipeline crossing • HVAC/R – Heating, Ventilation, Air Conditioning & Refrigeration

  4. PROCESS ENGINEERING

  5. PROCESS ENGINEERING • PROCESS ENGINEERING - an early project activity for analysis of physical separation or chemical conversion. It follows project definition and early financial studies. System-wide Process simulation nowadays is computer-aided e.g. heat-and-mass balances, logical block flows, control philosophies, and equipment selection. Important Deliverables: • Process Flow Diagrams(PFDs)- schematic showing major process equipment, main fluid flows, and basic stream characteristics (pressure, level, temp., flow). • Piping and Instrumentation Diagrams(P&IDs)- schematics with much more detail and confirmed data. Shown here are process condition limitations, major machinery specifications, minor equipment data, pipe size/details, instrumentation types, and more precise controls/automation. • Line Designation Tables (LDTs) - spreadsheet report showing details of every piping section e.g. start-end point, process variables, and other mechanical data.

  6. PROCESS ENGINEERING Usual entry-level positions: • Chemical Process Engineer • Mechanical Process Engineer • Process Simulation Specialist Minimum Skill Sets for a Junior Process Engineer: • Undergraduate degree in Chemical Engineering, Mechanical Engineering, or Chemistry-related academic programs. • Basic knowledge of Fluid Statics/Dynamics, Thermodynamics, Heat Transfer, and Chemical Unit Operations. • Supplemental knowledge in Process Equipment Design, Distillation Theory, Stoichiometry, and Chemical Reactions.

  7. PROCESS ENGINEERINGCHEMCAD Process Simulation, Screen Images

  8. PROCESS ENGINEERINGHeat and Mass Balance (HMB) Study, Selexol Process

  9. PROCESS ENGINEERINGEarly concept of an oil refinery

  10. PROCESS ENGINEERINGExample of Process Flow Diagram (PFD)

  11. PROCESS ENGINEERINGExample of Piping & Instrumentation Diagram (P&ID)

  12. PROCESS ENGINEERING Process Engineering and Beyond: • Next-Generation Process Simulators…..higher processing speeds, capable of more simultaneous calculations, broader chemical database. • Multi-Physics Tools to the Mainstream……these software can now be fully integrated with existing Process Simulators. • Intelligent 2D Diagrams……embedded data on PFDs and P&IDs will pop up once a particular element is clicked or highlighted on the drawing.

  13. PIPING ENGINEERING

  14. PIPING ENGINEERING • Screen shots of CAEPIPE, a widely-used pipe stress analysis software, showing the Input Geometry: Piping layout imported from CAD 3D Model, or manually re-created

  15. PIPING ENGINEERING • Stress Output…….watch for the “Reds”! RED areas have higher calculated stresses (needs re-work)

  16. PIPING ENGINEERING • Animation features…...it moves! Shows areas of excessive movement, direction of thermal growth, lift-off at support points, etc.

  17. PIPING ENGINEERINGIf not analysed properly, pipes may….. …deform and collapse ….or lift-off from supports

  18. PIPING ENGINEERING • PIPING ENGINEERING - a Mechanical sub-discipline mainly to validate Piping Design’s pipe-fittings layout, inside enclosed industrial areas, by computational analysis or technical reasoning. • Such activities follow right after critical and major piping are completely laid out and supported. • PIPE - a closed cylindrical conduit for moving fluid (liquid, gas, solid particles) from one location to another, either by gravity or applied pressure. • FITTINGS - are transition elements for connecting pipes into an assembly or conduit network. Elbows, tees, flanges, reducers, and couplings are examples. • PIPING- logical assembly of pipes, fittings, valves, and supports.

  19. PIPING ENGINEERING Important Deliverables: • Static & Dynamic Pipe Stress Analysis, Reports - computer-aided, hand calculations, and “by-inspection” judgement. • Finite Element Analysis (FEA)- on equipment nozzles, header branches, and support attachments. • General Pressure Calculations – wall thickness, branch reinforcement, leak-strength testing, and hot-tap calculations. • Sizing of Engineered Restraints- for spring supports, rollers, sway braces, sway struts, seismic snubbers, etc. • Detailing of Special Pipe Supports- as required by stress analysis results or vendor special requests.

  20. PIPING ENGINEERINGPlant Piping 3D layout of piping and pressure vessels Offshore platform piping and equipment

  21. PIPING ENGINEERING Usual entry-level positions: • Piping Design Engineer • Pipe Stress Engineer • Piping Materials Engineer Minimum Skill Sets for a Junior Piping Engineer: • Undergraduate degree in Mechanical Engineering, Chemical Engineering, or related sub-discipline. • Basic knowledge of Structural Mechanics, Strength of Materials, Fluid Dynamics, Machine Elements Design, Materials Science, and Welding Technology. • Supplemental knowledge in Chemical Processes, Heat Transfer, Thermodynamics, and Stationary/Rotating Mechanical Equipment.

  22. PIPING ENGINEERINGExamples of Engineered Restraints Variable spring hangers Seismic snubber Constant spring can Sway strut assembly Sway brace assembly

  23. PIPING ENGINEERINGExample of Custom-Ordered Supports Rigid hanger clamp, for pre-insulated line Pipe clamp and shoe, for pre-insulated cold line Support clamp with fabric lining, for vibrating lines

  24. PIPING ENGINEERING Piping Engineering and Beyond: • Full Integration of computational Analysis Software with 3D CAD Model……seamless and bi-directional compatibility of both CAD and CAE activities, thus substantial savings of time and resources. • FEA/CFD Multi-Physics to the Mainstream……complex analysis and engineering calculations can now be simultaneously performed e.g. structural mechanics, fluid flow, vibration, and heat transfer. • Opportunities in Oilfield Frontier Areas…….more complex piping needs for fixed offshore platforms, floating FPSOs, marine tanker, and Arctic process modules.

  25. PIPING ENGINEERINGFEA & Multi-Physics Analysis Tools FEA of stab-in branch Multi-Physics Analysis (thermal + structural) of vessel FEA of crimped pipe

  26. PIPING ENGINEERINGCFD & Multi-Physics Analysis Tools ABAQUS 2D Multi-Physics (fluid flow + thermal) COMSOL 3D Multi-Physics (fluid flow + thermal) through elbow ANSYS 3D Multi-Physics (wind + thermal + struct.) around reactors

  27. PIPELINE ENGINEERING

  28. PIPELINE ENGINEERING • PIPELINE ENGINEERING - a Mechanical sub-discipline mainly to validate Pipeline Design’s overland or seafloor routing, by computational analysis or technical reasoning, outside the fenced industrial area. • Such activities usually start after initial project development, geodetic (land) or bathymetric (ocean) surveys, and preliminary right-of-way routing. Pipelines are generally classified into: • Land Pipelines, Underground (Buried) • Land Pipelines, Aboveground • Underwater Pipelines Important Deliverables/Involvement: • Hydraulic Analysis, Steady-State and/or Transient (Surge) • Pipeline Stress Analysis • HDD (Horizontal Directional Drilling) and Crossing Studies • Lateral and Upheaval Buckling Analysis

  29. PIPELINE ENGINEERING Usual entry-level positions: • Pipeline Design Engineer • Pipeline Stress Engineer • Pipeline Hydraulics Engineer Minimum Skill Sets for a Junior Pipeline Engineer: • Undergraduate degree in Mechanical or Civil Engineering. • Basic knowledge of Engineering Surveying, Structural Mechanics, Strength of Materials, Fluid Dynamics, Machine Elements Design, Materials Science, and Welding Technology. • Supplemental knowledge of Heat Transfer, Thermodynamics, and Stationary-Rotating Mechanical Equipment.

  30. PIPELINE ENGINEERINGLand Pipeline Routing Natural gas pipeline right-of-wayRouting Study taken from terrainsurvey Plan-and-Profile Drawing, with data from routing study and terrain survey

  31. PIPELINE ENGINEERINGPipeline Analysis Seismic analysis….and mitigation measures for Trans-Alaska Pipelinewhile crossing the Denali fault line River crossing…..suspension bridge and cable stay details for Trans-Alaska Pipeline

  32. PIPELINE ENGINEERINGEngineered Pipeline Supports Detail of H-Support and side bumpers Trans-AlaskaPipeline ammonia-filled H-Support, with cooling fins, pile driven through permafrost

  33. PIPELINE ENGINEERINGUnderwater Pipelines Underwater gas pipeline on uneven seafloor, with free-spanned sections Underwater pipelines, for oil- and-gas production gathering

  34. PIPELINE ENGINEERINGSeafloor Routing Study of underwater oil pipeline

  35. PIPELINE ENGINEERINGPipeline Stability Analysis & FEA Overstress at seabed touchdown area, due to excessive bending from pipelay surface vessel

  36. PIPELINE ENGINEERING Pipeline Engineering and Beyond: • Integration of Pipeline Surveys with Routing Selection……in intelligent 3D format, these related activities will be fully synchronized for accuracy and cost savings. • Pipeline 3D Models Imported Into Multi-Physics Simulation…..like stress analysis, hydraulic surge, flow assurance, global buckling, or ice gouging hazards. • Deeper, Colder……in search for oil and gas, the industry is pushing the limits of pipeline technology beyond the world’s Continental Shelf and in harsher Arctic environments.

  37. PIPELINE ENGINEERINGArctic Pipelines, Ice Gouge Hazard Analysis & FEA Burial depth is critical, to prevent pipeline damage Berg gouging Gouged seafloor imaging Sea ice gouging

  38. PIPELINE ENGINEERINGCFD & Multi-Physics Analysis Tools (ANSYS) 3D CFD (fluid flow + structural) through valve 3D CFD (fluid flow only) through blades 3D CFD (fluid flow + thermal) at junction

  39. Trivia Question: What’s the difference between “PIPING” and “PIPELINES”? Other than spelling, of course.

  40. Answers: PIPING • Inside the enclosed industrial area or fenced plot limits. • Physical configuration can be very complex. • Mostly of short length, specified in feet or meters. • Uses lower grade steel, thus pipe wall is thicker. • Can operate at very high temperatures and pressures, or conversely at cryogenic temperatures and partial vacuum. PIPELINES • Outside the enclosed industrial area or fenced plot limits. • Physical configuration is usually simple, from point A to point B. • Almost always very long, specified in miles or kilometres. • Uses higher grade steel, thus pipe wall is thinner. • Usually operates at moderate temperatures and high pressures.

More Related