960 likes | 979 Views
Explore the use of knots as constructive sculptural building blocks, creating aesthetically pleasing artifacts. Discover various methods to generate and increase the complexity of knots in a structured, procedural manner. Also, learn about ways to make complicated knots through bottom-up knot construction, fusing simple knots together, top-down mesh infilling, and longitudinal knot splitting.
E N D
Graphics Lunch, Feb. 5, 2009 • Carlo H. Séquin
Graphics Lunch, Feb. 5, 2009 Carlo H. Séquin U.C. Berkeley Knotty problems in knot theory • NaughtyKnotty Sculptures
But This: Sculptures Made from Knots • Knots as constructive sculptural building blocks.
Math-Art Connection • Previous explorations: • Minimal surfaces • Hyperbolic tessellations • 4-dimensional polytopes • When does a mathematical model • become a piece of art ?
Rapid Prototyping Model of the 24-Cell • Noticethe 3-foldpermutationof colorsMade on the Z-corp machine.
Tetra Trefoil Tangles • Simple linking (1) -- Complex linking (2) • {over-over-under-under} {over-under-over-under}
Tetra Trefoil Tangle (2) • Complex linking -- two different views
Tetra Trefoil Tangle • Complex linking (two views)
Octahedral Trefoil Tangle (1) • Simplest linking
Platonic Trefoil Tangles • Take a Platonic polyhedron made from triangles, • Add a trefoil knot on every face, • Link with neighboring knots across shared edges.
Icosahedral Trefoil Tangle • Simplest linking (type 1)
Icosahedral Trefoil Tangle(type 3) • Doubly linked with each neighbor
Realization: Extrude Hone - ProMetal • Metal sintering and infiltration process
Sculptures Made from Knots More recently, I have been looking for sculptures where the whole piece is just a single knot. • Generate knots & increase their complexity in a structured, procedural way;explore several different methods… --> • Make aesthetically pleasing artifacts!
PART BWays to Make Complicated Knots • I.Bottom-up knot construction • II. Fusing simple knots together • III.Top-down mesh infilling • IV. Longitudinal knot splitting
The 2D Hilbert Curve (1891) • A plane-filling Peano curve Do This In 3 D !
“Hilbert” Curve in 3D Replaces an “elbow” • Start with Hamiltonian path on cube edges and recurse ...
Jane Yen: “Hilbert Radiator Pipe” (2000) • Flaws( from a sculptor’s . point of view ): • 4 coplanar segments • Not a closed loop • Broken symmetry
A Knot Theorist’s View Thus our construction element should use a “more knotted thing”: e.g. an overhand knot: It is still just the un-knot !
Recursion Step • Replace every 90° turn with a knotted elbow.
Also: Start from a True Knot • e.g., a “cubist” trefoil knot.
A Knot Theorist’s View Thus our assembly step should cause a more serious entanglement: adjacent knots should entangle one another, or crossing strands should be knotted together . . . • This is just a compound-knot ! • It does not really lead to a complex knot !
Recursive 9-Crossing Knot 9 crossings • Is this really a 81-crossing knot ?
Outline • I. Bottom-up knot construction • II.Fusing simple knots together • III.Top-down mesh infilling • IV. Longitudinal knot splitting
Knot-Fusion • Combine 3 trefoils into a 9-crossing knot
From Paintings to Sculptures • Do something like this in 3D ! • Perhaps using two knotted strands(like your shoe laces).
Frank Smullin (1943 – 1983) • Tubular sculptures; • Apple II program for • calculating intersections.
Frank Smullin (Nashville, 1981): Granny Knot Square Knot • “ The Granny-knot has more artistic merits than the square knot because it is more 3D;its ends stick out in tetrahedral fashion... ”
Granny Knot as a Building Block Smullin: “TetraGranny” • Four tetrahedral links, like a carbon atom ... • can be assembled into diamond-lattice ... ... leads to the “Granny-Knot-Lattice”