1 / 9

System Modeling and Simulation: Understanding Complexity and Making Informed Decisions

Learn about system modeling and simulation, its advantages and pitfalls, and how to use simulation output for practical applications. Understand queuing systems, performance measures, and simulation terms. Gain insights into the importance of studying and improving queuing systems.

jorgey
Download Presentation

System Modeling and Simulation: Understanding Complexity and Making Informed Decisions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. System • Is a section of reality • Composed of components that interact with one • another • Can be a subsystem • Has hypothetical boundaries • Can include or input the external influence (based • on the purpose of study) • Performs a function Source: Khoshnevis

  2. Models • Abstraction/simplification of the system used as a proxy for the system itself • Can try wide-ranging ideas in the model • Make your mistakes on the computer where they don’t count, rather for real where they do count • Issue of model validity • Two types of models • Physical (iconic) • Logical/Mathematical — quantitative and logical assumptions, approximations Source: Systems Modeling Co.

  3. Advantages of Simulation • Flexibility to model things as they are (even if messy and complicated) • Avoid “looking where the light is” (a morality play): • Allows uncertainty, nonstationarity in modeling • The only thing that’s for sure: nothing is for sure • Danger of ignoring system variability • Model validity Source: Systems Modeling Co.

  4. The Bad News • Don’t get exact answers, only approximations, estimates • Also true of many other modern methods • Can bound errors by machine roundoff • Get random output (RIRO) from stochastic simulations • Statistical design, analysis of simulation experiments • Exploit: noise control, replicability, sequential sampling, variance-reduction techniques • Catch: “standard” statistical methods seldom work Source: Systems Modeling Co.

  5. Remarks on pitfalls • Inappropriate levels of complexity • Lengthy development time • Inherent inexactness of results • Misinterpretation of simulation results • Other suitable techniques • Simulation is an art rather than science Source: Khoshnevis

  6. Example 2: Packing Station with break and carts Refer to handout on web page. Objectives: • Relationship of different goals to their simulation model • Preparation of input information for model creation • Input to and output from simulation software (Arena) • Creation of summary tables based on statistical output for final analysis IE 429, Parisay, January 2010

  7. Example 2 Logical Model IE 429, Parisay, January 2010

  8. You should have some idea by now about the answer of these questions. * What is a “queuing system”? * Why is that important to study queuing system? * Why do we have waiting lines? * What are performance measures of a queuing system? * How do we decide if a queuing system needs improvement? * How do we decide on acceptable values for performance measures? * When/why do we perform simulation study? * What are the “input” to a simulation study? * What are the “output” from a simulation study? * How do we use output from a simulation study for practical applications? * How should simulation model match the goal (problem statement) of study? IE 429, Parisay, January 2010

  9. Simulation Terms • Entities: “Players” that move around, change status, affect and are affected by other entities • Resources: What entities compete for: People, Equipment, Space. Entity seizes a resource, uses it, then releases it. • Queues: Place for entities to wait when they can’t move on • Attributes: Characteristic of all entities to describe and or differentiate • Process: The task being performed with some duration, usually with random length of time

More Related