1 / 32

Wide-sense Nonblocking for Multi-log(d^n,m,k) Networks under the Minimum Index Strategy

Wide-sense Nonblocking for Multi-log(d^n,m,k) Networks under the Minimum Index Strategy. Speaker: Fei-Huang Chang Coauthers: Ding-An Hsien, Chih-Hung Yen. Definition: Multi-stage Inter-connectional Networks. Crossbars. Output stage. Input stage. C(2,4,3). 1. 1. 1. n. 2. 2. 2. r. r.

jorryn
Download Presentation

Wide-sense Nonblocking for Multi-log(d^n,m,k) Networks under the Minimum Index Strategy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wide-sense Nonblocking for Multi-log(d^n,m,k) Networks under the Minimum Index Strategy Speaker: Fei-Huang Chang Coauthers: Ding-An Hsien, Chih-Hung Yen

  2. Definition:Multi-stage Inter-connectional Networks Crossbars Output stage Input stage

  3. C(2,4,3) 1 1 1 n 2 2 2 r r m Definition:3-stage Clos network---C(n,m,r) Input stage Output stage Middle stage

  4. Definition:Request An order pair of (input-crossbar, output-crossbar) is a request. 1 1 1 n (1,2) request 2 2 2 r r m

  5. Definition:The Corresponding Matrix 1 1 1 2 1 2 2 2 3 2,3 3 3 m

  6. Definition:Strictly Nonblocking (SNB)Wide-sense Nonblocking (WSNB) A network is strictly nonblocking if a request can always be routed regardless of how the previous pairs are routed. A network is said to be wide-sense nonblocking with respect to a routing strategy M if every request is routable under M.

  7. Definition: Two routing strategies for Clos networksPacking(P)Minimum Index (MI) P: Route through anyone of the busiest middle crossbars. MI: Route through the smallest index of middle crossbars if possible.

  8. Theorem:Clos (1953)C(n,m,r) is SNB if and only if m>2n-2. Proof: 1 1 1 n-1 co-inlet n-1 co-outlet 2 2 2 r r m

  9. Theorem: Benes (1965)C(n,m,2) is WSNB under P if and only if m≧[3n/2]. Theorem: Smith(1977)C(n,m,r) is not WSNB under P or MI if m≦[2n-n/r]. Theorem: Du et al.(2001)C(n,m,r) is not WSNB under P or MI if m≦[2n-n/2^(r-1)]. Theorem: Chang et al.(2004)C(n,m,r) is WSNB under P(r≠2), MI if and only if m>2n-2.

  10. Theorem: Du et al.(2001)C(n,m,r) is not WSNB under MI if m≦[2n-n/2^(r-1)]. For C(8,m,3) , 2n-n/2^(r-1)=16-2=14 [1,4] [1,8] [1,2] [9,12] [13,14] [9,12] [1,8] [5,8] [6,8] 15 [3,8] [1,8] [1,5]

  11. [14,16] [25,28] [17,24] [1,16] [29,30] [29,30] [1,13] 31 Chang (2002.10)C(n,m,r) is not WSNB under MI if m≦[2n-n/2^(2r-2)].

  12. Chang (2003.2)C(n,m,r) is WSNB under MI if and only if m>2n-2 For C(16,m,2) by induction on n. n=15 is true. When n=16 [3,7] [1,7] [3,4] [17,20] [25,28] [15,21] [9,12] [5,8] [8,14] 29 [29,30] [22,28] [22,24] [21,24] [13,16] [1,2]

  13. Definition:Banyan-type networks (Log d^n networks)

  14. Definition:Base Line Networks (Banyan-type) BL2(4) BL2(3) BL2(2)

  15. Banyan Banyan Banyan Definition:Multi-log N networks with p copies Middle crossbar of middle stage Input stage

  16. 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

  17. Theorem: Shyy and Lea (1991), Hwang (1998)

  18. I1 O1 I2 O2 Theorem: Chang et al. (2006)Multi-log N networks is WSNB under MI if and only if p≧p(n).

  19. Theorem: Chang et al. (2006)Multi-log N networks is WSNB under MI if and only if p≧p(n). I’1 O’1 O1 I1 O2 I2 I’2 O’2

  20. Definition:Extra Stage of Banyan-type networks

  21. BL(n,k) BL(n,k) BL(n,k) Definition:Multi-log (N=d^n,p,k) Networks (Log_d(N,p,k))

  22. Theorem: Hwang (1998) Chang et al. (2006)Log_d(N,p,k) is SNB if and only if p>p(n,k).

  23. Theorem: Chang et al. (2006)Log_d(N,p,k) is WSNB under CD, CS, STU, P if and only if p≧p(n,k).

  24. Proposition:BL(n, k) contains d copies of BL(n-1, k-1).

  25. Theorem: Hwang (1998) Chang et al. (2006)Log_2(N,p,k) is SNB if and only if p≧p(n,k).

  26. Theorem: Log_2(N,p,1) is WSNB under MI if and only if p≧p(n,1).

  27. I1 O1 BL(4,1) I2 O2 BL(4,1) n’=3 n’=3 n”=4 n”=4 Theorem: Log_2(N,p,1) is WSNB under MI if and only if p≧p(n,1). BL(3,0) BL(3,0)

  28. Theorem: Log_2(N,p,k>1) is WSNB under MI if and only if p≧p(n,k).

  29. References:[1] C. Clos, A study of nonblocking switching networks, Bell System Technol. J. 32 (1953) 406-424.[2] F. K. Hwang, The Mathematical Theory of Nonblocking Switching Networks, World Scientific, Singapore, first ed. 1998; second ed. 2004.[3] D. Z. Du et al., Wide-sense nonblocking for 3-stage Clos networks, in: D. Z. Du, H. Q. Ngo(Eds.), Switching Networks: Recent Advances, Kluwer, Boston, (2001) 89-100.[4] F. K. Hwang, Choosing the best log_k(N,m,p) strictly nonblocking networks, IEEE Trans. Comm. 46 (4) (1998) 454-455.[5] D.-J. Shyy., C.-T. Lea, log_2(N,m,p) strictly nonblocking networks, IEEE Trans. Comm. 39 (10) (1991) 1502-1510.[6] D.G. Smith, Lower bound in the size of a 3-stage wide-sense nonblocking network, Elec. Lett. 13 (1977) 215-216.[7] F. H. Chang et al., Wide-sense nonblocking for symmetric or asymmetric 3-stage Clos networks under various routing strategies, Theoret. Comput. Sci. 314 (2004) 375-386.[8] F. H. Chang et al., Wide-sense nonblocking for multi-log_d N networks under various routing strategies, Theoret. Comput. Sci. 352 (2006) 232- 239.

  30. The End. Thank you for your attention!!

  31. 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

More Related