570 likes | 831 Views
A MAGIC FORMULA OF Nature. Primo Brandi - Anna Salvadori. Riccione 2018. Mathematics & Real life. www.matematicaerealta.eu. The description of the forms is one of the major problems of biology . Is mathematics able to give a support ?.
E N D
A MAGIC FORMULA OF Nature Primo Brandi - Anna Salvadori Riccione 2018
Mathematics & Real life www.matematicaerealta.eu The descriptionof the formsisoneof the major problemsofbiology. Ismathematicsabletogive a support? Mathematicsis the languageof Science and Tachnology Anna Salvadori – Univ.Perugia Riccione 2018
Mathematics & Real life www.matematicaerealta.eu Johan Gielis(American Journal of Botany 2003) proposed a formula that can describe a wide rangeofnaturalshapes Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Top down: tounderstand the roleofeachparameter Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Productoftwofunctions Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Letus concentrate ourattempition on the secondfunction assumingconstant the first one Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Assume the threepowerparameters coincide Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Assume the threepowerparameters coincide Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Equivalentformulation Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Re-scale the variable Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Re-scale the variablem=4 Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Frompolartocartesiancoordinates Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Frompolartocartesiancoordinates Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Re-scale the twoviariablexa=b=1 Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Wellknownequation key idea Anna Salvadori – Univ.Perugia Riccione 2018
Mathematics & Real life www.matematicaerealta.eu Botton up: todiscover the themain idea behind Top down: tounderstand the roleofparameters Anna Salvadori – Univ.Perugia Riccione 2018
Gielissuperformula Bottom up: todiscover the themain idea behind Letus start from the key idea Anna Salvadori – Univ.Perugia Riccione 2018
The squared circle Lamé circumference Gabriel Lamé(1795 –1870) revolutionized this view Anna Salvadori – Univ.Perugia Riccione 2018
The squared circle Lamé circumference For a long time the circle and the square have been considered as "opposed" figures. Gabriel Lamé(1795 –1870) revolutionized this view Anna Salvadori – Univ.Perugia Riccione 2018
The squared circle Lamé circumference For a long time the circle and the square have been considered as "opposed" figures. Gabriel Lamé(1795 –1870) revolutionized this view Anna Salvadori – Univ.Perugia Riccione 2018
The squared circle Lamé circumference For a long time the circle and the square have been considered as "opposed" figures. Gabriel Lamé(1795 –1870) revolutionized this view Euclidean LinfinutyMAX L1 Manhattan p=0 0<p<1 p=1 1<p<2 p=2 p>2 p->infinity Anna Salvadori – Univ.Perugia Riccione 2018
Super ellipses In the real life PietHein(1959) Sergel's Torg, Stockholm Anna Salvadori – Univ.Perugia Riccione 2018
Super ellipses In the real life PietHein(1959) Sergel's Torg, Stockholm Anna Salvadori – Univ.Perugia Riccione 2018
Super ellipses In the real life PietHein(1905-1996) glasses, plates, desk lamps … Anna Salvadori – Univ.Perugia Riccione 2018
Super ellipses In the real life bamboo cane Anna Salvadori – Univ.Perugia Riccione 2018
First step to superformula From Cartesian to Polar coordinates Anna Salvadori – Univ.Perugia Riccione 2018
First step to superformula From Cartesian to Polar coordinates Rodonee Grandi’s roses Luigi Guido Grandi (1671-1742) Anna Salvadori – Univ.Perugia Riccione 2018
First step to superformula From Cartesian to Polar coordinates Anna Salvadori – Univ.Perugia Riccione 2018
First step to superformula From Cartesian to Polar coordinates Anna Salvadori – Univ.Perugia Riccione 2018
First step to superformula From Cartesian to Polar coordinates represent the length of the vector ray corresponding to angle the local minima and maxima play a fundamental for the figure shape Anna Salvadori – Univ.Perugia Riccione 2018
First step to superformula From Cartesian to Polar coordinates represent the length of the vector ray corresponding to angle the local minima and maxima play a fundamental for the figure shape They correspond to the minimum and maximum points of the reciprocal function Anna Salvadori – Univ.Perugia Riccione 2018
First step to superformula From Cartesian to Polar coordinates represent the length of the vector ray corresponding to angle the local minima and maxima play a fundamental for the figure shape They correspond to the minimum and maximum points of the reciprocal function Anna Salvadori – Univ.Perugia Riccione 2018
First step to superformula From Cartesian to Polar coordinates Functions admits 4 minimum points and 4 maximum points for every value of parameter p Anna Salvadori – Univ.Perugia Mathenjeans 2018
Second step to superformula Fase parameter Anna Salvadori – Univ.Perugia Riccione 2018
Second step to superformula Fase parameter m integer m=2 m=1 m=3 m=4 m=5 m=6 m=20 m=10 Anna Salvadori – Univ.Perugia Riccione 2018
Second step to superformula Fase parameter m rational m=5/3 m=1/2 m=3/2 2 spins 2 spins 3 spins Anna Salvadori – Univ.Perugia Riccione 2018
Second step to superformula Fase parameter m irrational m=e 3 spins 7 spins 14 spins Anna Salvadori – Univ.Perugia Riccione 2018
Third step to superformula Power Parameters pi The number of possible shapes increase greatly assuming different values for the exponents Each parameter produces the effect of a non-linear transformation. Anna Salvadori – Univ.Perugia Riccione 2018
Third step to superformula Power Parameters pi Anna Salvadori – Univ.Perugia Riccione 2018
The superformula Two remarkable particular cases: Anna Salvadori – Univ.Perugia Mathenjeans 2018
The superformula Two remarkable particular cases: Anna Salvadori – Univ.Perugia Riccione 2018
The superformula First case: spirals Anna Salvadori – Univ.Perugia Riccione 2018
The superformula Two remarkable particular cases: Anna Salvadori – Univ.Perugia Riccione 2018
The superformula Second case: flowers Anna Salvadori – Univ.Perugia Riccione 2018
The superformula Anna Salvadori – Univ.Perugia Riccione 2018
The superformula The code Anna Salvadori – Univ.Perugia Riccione 2018
Code – computer graphic Classiscartoons Anna Salvadori – Univ.Perugia Riccione 2018
Code – computer graphic Computer images Anna Salvadori – Univ.Perugia Riccione 2018
Code – computer graphic Anna Salvadori – Univ.Perugia Riccione 2018