1 / 15

Intrinsic and extrinsic p t effects on J/ y shadowing This work , on behalf of

Transverse momentum dependence of J/ Y shadowing effects in  s NN = 200 GeV d+Au collisions at RHIC (and its consequences in Au+Au). Intrinsic and extrinsic p t effects on J/ y shadowing This work , on behalf of

Download Presentation

Intrinsic and extrinsic p t effects on J/ y shadowing This work , on behalf of

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transverse momentumdependence of J/Y shadowing effects in sNN=200 GeV d+Au collisions at RHIC (and itsconsequences in Au+Au) Intrinsic and extrinsic pteffects on J/y shadowing This work, on behalf of E. G. Ferreiro F. Fleuret J.-P. Lansberg A. Rakotozafindrabe Work in progress… F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  2. Introduction • Shadowing and d+Au PHENIX data • 2 remarks: • Need at least 2 different sbreakup to fit RdAu.vs.Ncoll • No prediction for RdAu.vs.pT 200 GeV/c PHENIX d+Au data Phys. Rev. C 77, 024912 (2008) Shadowing modelisation from R.Vogt, Phys.Rev. C71 (2005) 054902 Assuming pT=0 RdAu -2.2<y<-1.2 -0.35<y<0.35 1.2<y<2.2 Ncoll • Goal of thiswork: introduce J/YpT in shadowing computation • In this talk, we’llconsider EKS98 shadowing only • Investigatingtwomechanisms • g+g  J/Y  « intrinsic » scheme: the pT of the J/Ycomesfrom initial partons • Can beparametrizedusing the data • g+g  J/Y+g  « extrinsic » scheme: the pT of the J/Yisbalanced by the outgoing gluon • Need a model to bedescribed Nuclear modification factor F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  3. This workGlauber modelisation of CNM effects • An event generator to produce J/Ysamples • Based on a glauber Monte Carlo • Use J/Y production models (or data) to get (J/Y) y, pT, x1, x2, Q² • Using EKS98, modify the J/Y cross section according to: • Compare with data using: • Use « intrinsic » (g+gJ/Y) and « extrinsic » (g+g  J/Y+g) schemes as inputs to get J/Ykinematics information See arXiv:0801.4949 for more details F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  4. « intrinsic » J/Y productiong+g  J/Y y, pT, x1, x2, Q² can be determined with data : using PHENIX p+p data Phys. Rev. Lett. 98, 232002 (2007) kinematics: • y, pT randomly picked on the data • Then, compute kinematics as input of shadowing factors F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  5. « extrinsinc » J/Y production g+g  J/Y+g Color singlet and color octet calculationscomparedwith PHENIX run 3 (200 GeV/c) p+p data : PHENIX, Phys. Rev. Lett 92, 051802 (2004). S-channelcutmechanism(extension of the color singlet model) comparedwith PHENIX run 5 (200 GeV/c) p+p data: Haberzettl and Lansberg, Phys. Rev. Lett. 100, 032006 (2008). Good description for pT > 2 GeV/c No description below 2 GeV/c  Use s-channelcut model in the following Model provides y, pT, x1; get and Q²=M²+pT² F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  6. d+Au Rapiditydependenceintrinsic.vs.extrinsic Intrinsic (g+g  J/Y) Small differencewhenaddingpT. In p+p: <pT> < 2 GeV/c No significantdifferencebetweenpTfrom central and forwardrapidity Extrinsic (g+g  J/Y + g) significantdifferencebetweenintrinsic and extrinsicscheme : more antishadowingatmidrapidity ; less shadowing atforwardrapidity. No breakup cross section used for this plot F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  7. d+Au Rapiditydependencebreakup (absorption) cross section Nuclear absorption added Intrinsicscheme: • following PHENIX PRC 77, 024912 (2008), best match isobtainedwithsbreakup = sabs = 2.8 mb Extrinsicscheme: • sbreakup = 2.8 mb is not enough for extrinsicscheme to match data • Trysbreakup = 4.2 mb as measured by NA50.  good match • to bedone: determining best sbreakupusingc² minimization F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  8. d+Au Centralitydependenceintrinsic .vs. extrinsic (w/ absorption) RdAu .vs. Ncoll Backwardrapidity :  Intrinsic + sbreakup=2.8 mb fails to reproduce the data (betterwithsbreakup=5.2mb) Extrinsic + sbreakup = 4.2 mb reproduces the data Midrapidity:  Both scenarios have the samebehavior. Good match Forwardrapidity:  Both scenarios have the samebehavior. Good match PHENIX Phys. Rev. C 77, 024912 (2008) Ncoll « extrinsic » shows a fair agreement with the data using the same sbreakup = 4.2 mb for all rapidities F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  9. d+Au Transverse momentumdependenceintrinsic .vs. extrinsic (w/ absorption) RdAu .vs. pT Backwardrapidity:Samebehavior for both scenarios ; difficult to conclude about the slope  ____________________________ Midrapidity:Samebehavior for both scenarios and match the data  ____________________________ Forwardrapidity:Both scenarios have the samebehavior ; slopesseemsmallerthan in the data  pTbroadening ? Cronin effect ? Difficult to conclude Need more precise data F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  10. Au+Au centralitydependenceintrinsic .vs. extrinsic (w/ absorption) • Intrinsic • Same CNM suppression at forward and central rapidity. More « additionnal » suppression observed at forward than at mid rapidity • Extrinsic • More CNM suppression atforwardthanat central rapidity. Seems to be consistent with the behaviorobserved in most central data. RAA/CNM to bedone… Npart Npart F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  11. Au+Au rapiditydependenceintrinsic .vs. extrinsic (w/ absorption) Intrinsic • Shape of CNM effects ~flat for all centralitybins suppression due to HDM effectsislargeratforwardrapiditythanat central rapidity. Extrinsic • Shape of CNM effectsischangingwithcentralityand follows the data  suppression due to HDM effectsis ~flat for all centralitybins. F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  12. Au+Au transverse momentum dependence Intrinsic Extrinsic • No major difference between intrinsic and extrinsic • Both models seem to reproduce fairly well the slopes of |y|<0.35 data at any centrality • Both models fail to reproduce the slopes of |y|  [1.2,2.2] data for central events  larger slope in the data (Cronin effect ?) • Will look at <pT²>… F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  13. Conclusion • We have investigatedeffects of « intrinsic » (g+g  J/Y) and « extrinsic » (g+g  J/Y+g) pTschemes on shadowing (using EKS98) • Observe significantdifferences in the shadowing effectswhenusing the twoschemes itis important to understand J/Y production in p+p collisions • Thesedifferences affect the conclusion wecanmakewhenstudying HDM effects in Au+Au collisions • The differencebetweenRAuAuforward / RAuAucentralcanbepartly due to CNM effects • The RAuAu.vs.yshapecanbepartly due to CNM effects • Transverse momentumstudiesgiveadditionnal information • RAuAu.vs.pTshapeisfairlywellreproduced by CNM effectsatmid-rapidity • RAuAu.vs.pTslopeissmaller for CNM effectsthan for the data atforwardrapidity • More precise d+Au data are needed to betterconstraint the models new d+Au data have been recordedthisyear (run 8)  30 times more data… F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  14. Backup slidex1,2.vs.y intrinsic extrinsic x1 x2 x1 x2 y y F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

  15. d Au X2 X2 X1 X1 X1 X2 J/ North y > 0 J/ South y < 0 J/ Central y = 0 rapidity y Backup slideEKS98 Central South North Eskola, Kolhinen, VogtNucl. Phys. A696 (2001) x2 PHENIX μ, North PHENIX m, SOUTH PHENIX e Small x2 (in Au) ~0.003 Large x2 (in Au) ~0.090 Intermediate x2 ~ 0.02 F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

More Related