210 likes | 314 Views
Towards Low-cost Swedish Planetary Missions. S. Barabash 1 , O. Norberg 2 , J.-E. Wahlund 3 , M. Yamauchi 1 , S. Grahn 4 , S. Persson 4 , and L. Blomberg 5 1. Swedish Institute of Space Physics, Kiruna, SWEDEN 2. Swedish Space Corporation, Esrange, SWEDEN
E N D
Towards Low-cost Swedish Planetary Missions S. Barabash1, O. Norberg2, J.-E. Wahlund3, M. Yamauchi1, S. Grahn4, S. Persson4, and L. Blomberg5 1. Swedish Institute of Space Physics, Kiruna, SWEDEN 2. Swedish Space Corporation, Esrange, SWEDEN 3. Swedish Institute of Space Physics, Uppsala, SWEDEN 4. Swedish Space Corporation, Solna, SWEDEN 5. Royal Institute of Technology, Stockholm, SWEDEN
It is a fate for small countries like Sweden to seek low-cost high-performance missions in order to keep the cut-in-edge position in national level space missions.
1995 Stowed configuration Swedish microsatellitesASTRID- 1World’s first ENA. Total mass 27 kg ENA main instrument seen on the left
In launch vehicle shroud 1998 Clean-room testing at SSC, Solna Sketch showing deployed axial magnetometer and star tracker boom Swedish microsatelliteASTRID- 2”Complete Set” of plasma instruments.Total mass 30 kg
Swedish nanosatelliteMUNIN”Flying Instrument”Mass 6kg / 3 sensor 2000 • MEDUSA • DINA • HiSCC
Nano-satellite advantage * Technology: - Test of state-of-art satellite technology - Test of state-of-art instrument - Test of ordinary market components in space * Science: - Quick public science (space weather and auroral research) - Frontier science (with state-of-art instrument) * Educational Outreach
After performing both ends, Munin nanosatellite and Odin high precision satellite, it is natural to seek feasibility of low-cost interplanetary missions. = Saga
Saga: interplanetary sub-satellite Size: 50 50 40 cm (Astrid-2 type) Mass: 37 kg (9 kg payload) Power: 10 W
Saga: Technical summary Axis spin-stabilized, axis perpendicular to ecliptic Size 50x50x40cm box Mass 37 kg for sub-satellite + 4 kg for extra communication package on mothership Power 70 W from solar array (0.5x0.4m), peak consumption 60 W Payload mass 9 kg, power 10 W Data link (+ranging?) Beagle-2 (MARESS) type UHF radio, 1-10 kb/sec with 40W power Separation & spin-up Mars Express (SUEM) type made by Hunting Main avionics simplified from SMART-1 (up to 40 kRad) Attitude/orbit control Cold gas (N2) propulsion + nutation damper Attitude determination sun sensor, star tracker
Saga: Plasma Science Venus? Mars? Asteroid? Comet? Magnetotal? • Atmospheric evolution and solar wind induced atmospheric escape • Instantaneous response of the near-planet environment (particle and electromagnetic) to solar wind variations • Plasma processes near non-magnetized/magnetized bodies and structure of an induced magnetosphere
Saga: Payload Such a mission requires state-of-art technologies which must be tested in Earth-orbiting satellite.
Dual-S/C Technological Mission Prisma + NanoSpace
Prisma 77 kg including new kick motor Payload 10.5 kg Power 26 W New S/C technology State-of-art Instrument
Prisma: Technology Test * Semi-coordinated formation flight Ranging by laser Inter-satellite communication * Micro-spacecraft technology Integration of electric component Kick motor High-telemetry (512 kbps) * Flight test of new scientific instrumentation Miniaturization with high resolution New function Common bus
Science Although this is a technological mission, Prisma will be the first ionospheric plasma mission with state-of-art instrumentation after 25 years' blank 1. Ionosphere-Magnetosphere (electrodynamic) coupling effects at ionospheric altitudes. 2. Plasma turbulence/structure and their role in plasma energization. 3. Atmosphere-Ionosphere coupling or physical processes behind sprites, gravity waves, and heatings. 4. Solar-Ionosphere coupling through plasma, radiation, and dynamics. 5. Oxygen and other heavy ion circulation from/to the ionosphere.
Concluding remarks Through Prisma mission, we try to * Keep cut-in-edge technology in micro-spacecraft body * Keep cut-in-edge technology in micro-spacecraft control * Keep cut-in-edge technology in scietific instrument With Saga concept, we should be able to * Make planetary missions handy * Increase chance for international collaboration Sweden always seeks international collaboration for aggressive missions