1 / 0

Can we forecast the demand for high speed rail?

Can we forecast the demand for high speed rail?. MARIA BÖRJESSON. 27 november 2009, 1. Presentationen. Jämföra Sampers’ elasticiteter och korselasticiteter med andra modeller och aggregerade svenska data.

jovita
Download Presentation

Can we forecast the demand for high speed rail?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Can we forecast the demand for high speed rail?

    MARIA BÖRJESSON 27 november 2009, 1
  2. Presentationen Jämföra Sampers’ elasticiteter och korselasticiteter med andra modeller och aggregerade svenska data. Jämföra den prognostiserade efterfrågan av Götalandsbanan med aggregerad svenska data. Nya och gamla modellen Långväga resande viktigt: 23% av allt privat resande. 27 november 2009, 2
  3. Varför är långväga resande svårare/mer ifrågasatt? Majority deals with regional travel.Ben-Akiva (2010), de Bok et al. (2010), Outwater et al (2010) and Rohr & Fox (2010) Non-linearity in the sensitivity to travel time (Gaudry, 2008) Daly (2010) Algers. Long-distance travel is more heterogonous (Axhausen et al., 1997) Large shift in technology? 27 november 2009, 3
  4. HSR experiences in Europe Paris-Lyon (2h) 9 % air; 91 % Madrid-Seville (2h 15m) air 20 %; rail 80% Madrid-Barcelona corridor (2h 38m): 47%; 53% air. London–Paris route, (2h 15m) air 20 %; rail 80% In Germany, where the HSR uses existing networks, only 12 % has shifted.
  5. Elasticities , 27 november 2009, 5
  6. Can we forecast using aggregate data? Source: Nelldal and Jansson, 2010
  7. SAMPERS Nested logit model: frequency, destination and mode Car, bus, train and air Estimated on large RP data set (National travel survey 1994-2000) Car as driver, 28985; Car as passenger; 19530; Train, 7013; Bus, 4809; Air, 4406; other modes, 1072 VTT €/h
  8. Kalibrering Trafikräkningar för flyg och tåg 61 % ökning av tågresor; 16 % for air. Observera för lite flyg (enl. mina siffror) Bilresor har kalibrerats mot RVU’n 27 november 2009, 8
  9. Data Traffic production [billion km] One-day survey Long distance survey 9,0 8,0 7,0 6,0 5,0 4,0 3,0 2,0 1,0 0,0 100-149 km 150-199 km 200-399 km 400-799 km 800- km Korta långväga bilresor är underrepresenterade i data resvaneundersökning Viktigt hur man ställer frågan 27 november 2009, 9
  10. Elasticities 27 november 2009, 10
  11. Elasticities , 27 november 2009, 11
  12. Gamla modellen Base case3:05 h HSR 2:14 h (-28%) Rail trips +40% +29% private +67% business Direct elasticity: business : -1.6; private: -0.8; all: -1.0 Cross elasticity (air): business: 0.54; private: 0.14; all: 0.38 Rail/air split increases from 65 percent to 75 percent (Data ger 55 procentinuläge)
  13. Nya modellen Base case3:05 h HSR 2:15 h (-28%) Rail trips +45% +28% private +95% business Direct elasticity: business : -2.1 (-1.6); private: -0.77 (0.8); all: -1.15 (-1.0) Cross elasticity (air): business: 0.71 (0.54); private: 0.15 (0.14); all: 0.34 (0.38) Rail/air split increases from 65 percent to 75 percent
  14. Resandenivåer i prognoserna SJ-data 2006 ger 1.4 milj/år resor Sthlm län - gbgLA Sampers 2006: 1.2 milj/år Sampers 2020 JA: 1.6 milj/år UA: 2.2 milj/år Sampers 2030 UA-bas: 2.5 milj/år US 1: 3.3 US 2: 3.4
  15. Validation against aggregate data We validate the air-rail split using aggregate Swedish data. We can control for Accessibility to airports and train stations Frequency and travel times taken from time tables Share of business travel. 27 november 2009, 15
  16. Business Trips 27 november 2009, 16
  17. Private trips 27 november 2009, 17
  18. Underskattning av den privata modellen Sampers 55 till 67 procent Exponentiella modellen ger 55 till 71 procent Skillnaden indikerar att reduktion av flygresor underskattas med 62 000 resor per år. Marginell påverkan på CBA 27 november 2009, 18
  19. Conclusion Own elasticities in the SAMPERS model is comparable with other models and experiences Elasticity - 1.0 for the HSR. Close to second phase Paris-Lyon Validation indicate too low elasticity for private trips, under estimate reduction of air trips. Market share predicted by Sampers lower than London-Paris; Madrid-Seville: Bromma? Congestion air? Error? Prices? 27 november 2009, 19
More Related