220 likes | 240 Views
This paper discusses the eXtended Merkle Signature Scheme (XMSS), a digital signature scheme based on minimal security assumptions. It provides a generic and efficient construction for forward secure signatures.
E N D
XMSS - A Practical Forward Secure Signature Scheme based onMinimal Security Assumptions J. Buchmann, E. Dahmen, A. Hülsing 02.12.2011 | TU Darmstadt | A. Huelsing| 1
Digital Signature Schemes 02.12.2011 | TU Darmstadt | A. Huelsing | 2
RSA – DSA – EC-DSA - … Trapdoor one-way function Collision resistant hash function RSA, DH, SVP, MQ, … Digital signature scheme 02.12.2011 | TU Darmstadt | A. Huelsing | 3
Digital SignatureSchemes • Strong complexity theoretic assumption (Trapdoor one-way function) hard to fulfill • Specific hardness assumptions Quantum computers, new algorithms + efficient but mostly in ROM 02.12.2011 | TU Darmstadt | A. Huelsing | 4
The eXtended Merkle SignatureScheme XMSS 02.12.2011 | TU Darmstadt | A.Huelsing | 5
The eXtended Merkle SignatureScheme (XMSS) • Minimal complexity theoretic assumptions • Generic construction (No specific hardness assumption) • Efficient (comparable to RSA) • Forward secure 02.12.2011 | TU Darmstadt | A. Huelsing | 6
Minimal complexity theoretic assumptions Second-preimage resistant HFF Target-collision resistant HFF XMSS Pseudorandom FF Håstad, Impagliazzo, Levin, Luby 1999 Goldreich, Goldwasser, Micali 1986 Rompel 1990 Digital signature scheme Existential unforgable under chosen message attacks One-way FF Naor, Yung 1989 Rompel 1990 02.12.2011 | TU Darmstadt | A. Huelsing | 7
Output lengthofhashfunctions Hash function h:{0,1}* → {0,1}m Assume: - only generic attacks, - security level n Collision resistance required: →generic attack = birthday attack →m = 2n Second-preimage resistance required: →generic attack = exhaustive search →m = n 02.12.2011 | TU Darmstadt | A. Huelsing | 8
Forward Secure Digital Signatures pk classical sk pk forward sec sk sk1 sk2 skT ski time tT ti t1 t2 Key gen. 02.12.2011 | TU Darmstadt | A. Huelsing | 9
Construction 02.12.2011 | TU Darmstadt | A. Huelsing | 10
XMSS – Winternitz OTS[Buchmann et al. 2011] - Uses pseudorandom function family - Winternitz parameter w, message length m, random value x sk1 pk1 x l skl pkl x w 02.12.2011 | TU Darmstadt | A. Huelsing | 11
XMSS – secret key For multiple signatures use many key pairs. Generated using pseudorandom generator (PRG), build using PRFF Fn: Secret key: Random SEED for pseudorandom generation of current signature key. PRG PRG PRG PRG PRG PRG 02.12.2011 | TU Darmstadt | A. Huelsing | 12
XMSS – public key Modified Merkle Tree [Dahmen et al 2008] h second preimage resistant hash function = ( , b0, b1, b2, h) Public key b0 b0 b0 b0 b1 b1 bh 02.12.2011 | TU Darmstadt | A. Huelsing | 13
XMSS signature b0 b0 b0 b0 b1 b1 b2 i , , ) Signature = (i, , i 02.12.2011 | TU Darmstadt | A. Huelsing | 14
XMSS forwardsecure PRG FSPRG: Forward secure PRG using PRFF Fn FSPRG FSPRG FSPRG FSPRG FSPRG 02.12.2011 | TU Darmstadt | A. Huelsing | 15
Security Proof - Idea Tree construction and W-OTS are provably secure. Given Adversary A against pseudorandom Scheme can be used against the random scheme. → Inputs are the same Input distribution differs → We can bound success probability against random scheme We can use A to distinguish PRG See full version on iacreprint (report 2011/484) 02.12.2011 | TU Darmstadt | A.Huelsing | 16
XMSS in practice 02.12.2011 | TU Darmstadt | A.Huelsing | 17
XMSS - Instantiations Trapdoor one-way function DL RSA MP-Sign Cryptographic HFF Block Cipher Second-preimage resistant HFF Pseudorandom FF XMSS 02.12.2011 | TU Darmstadt | A. Huelsing | 18
Hash functions & Blockciphers AES Blowfish 3DES Twofish Threefish Serpent IDEA RC5 RC6 … SHA-2 BLAKE Grøstl JH Keccak Skein VSH SWIFFTX RFSB … 02.12.2011 | TU Darmstadt | A. Huelsing | 19
XMSS Implementations C Implementation, usingOpenSSL Intel(R) Core(TM) i5 CPU M540 @ 2.53GHz with Intel AES-NI 02.12.2011 | TU Darmstadt | A. Huelsing | 20
Conclusion 02.12.2011 | TU Darmstadt | A.Huelsing | 21
XMSS … needs minimal securityassumptions … isforwardsecure … canbeusedwithanyhashfunctionor block cipher … performanceiscomparableto RSA, DSA, ECDSA … 02.12.2011 | TU Darmstadt | A.Huelsing | 22