200 likes | 356 Views
Provably secure randomized blind signature scheme based on bilinear pairing. Source: Computers and Mathematics with Applications Author: Chun-I Fan , Wei-Zhe Sun, Vincent Shi-Ming Huang Presenter: 林志鴻. Outline. Introduction Preliminaries Randomized blind signature
E N D
Provably secure randomized blind signature scheme based on bilinear pairing Source: Computers and Mathematics with Applications Author: Chun-I Fan , Wei-Zhe Sun, Vincent Shi-Ming Huang Presenter:林志鴻
Outline • Introduction • Preliminaries • Randomized blind signature • Performance and security Analysis • Conclusion
Signer User Introduction + (1) +盲因子= (2) = (3) -盲因子=
Introduction(cont.) • Usage of Blind Signature • Anonymous electronic voting • Untraceable electronic cash system • Security properties of Blind Signature • Unlinkability • Unforgeability • randomization
A Signer B Unlinkability A? or B?
Blind signature with randomization • 分成六個演算法 • KeyGen(k) → (SK, PK) • Blind(m, r, u) → α • Sign(α,y, SK) → t • Unblind(t, r) → s • RandMix(u, y) → c ;σ=signature-message • Verify(σ,PK) → {0,1} • Verify((Unblind (Sign (Blind (m, r, u),y,SK),r),m, RandMix(u, y) ),PK)=1
Outline • Introduction • Preliminaries • Randomized blind signature • Performance and security Analysis • Conclusion
Preliminaries • Bilinear Pairing • GDH Groups
Bilinear Pairing • e : G1 × G1 → G2 • Bilinearity • Non-degeneracy • Computability
GDH Groups • 對於一個循環群G • CDH problem︰對a,b∈Zq給定(P,aP,bP) ∈ G計算abP • DDH problem ︰對a,b,c∈Zq 給定(P,aP,bP,cP) ∈ G 判斷c=ab • 若存在一多項式時間演算法A可解決DDH問題但不存在任何演算法可解決CDH問題則此循環群G稱為GDH Groups
Outline • Introduction • Preliminaries • Randomized blind signature • Performance and security Analysis • Conclusion
Randomized blind signature • Initialization phase • Blinding phase • Signing phase • Unblinding phase • Verification phase
Randomized blind signature (cont.) • Initialization phase • 輸入秘密參數k產生兩個order q的循環群G1,G2 ,P為G1生成元, e: G1× G1→G2 • 簽章者選取兩個私鑰x1,x2 ∈Zq* 產生相對應的公鑰Pub1 = x1P, Pub2 = x2P ,H:{0,1}*→G1* • params = (q, H,G1,G2,e,P, Pub1, Pub2)
Randomized blind signature (cont.) • Blinding phase • 當使用者發送簽章要求時,簽章者隨機選取 y∈ Zp*傳送ρ= yP 給使用者 • 使用者準備明文m並隨機選取u,r1,r2∈ Zp*,設定隨機參數C = u ρ • 計算盲訊息α1 = r1H(m || C) + r2Pα2 = r1u (mod q) • 傳送(α1, α2 )給簽章者
Randomized blind signature (cont.) Pub1 = x1P, Pub2 = x2P ρ= yP ,C = u ρ α1 = r1H(m || C) + r2Pα2 = r1u (mod q) • Signing phase 簽章者計算T = x1α1 + x2yα2P並回傳給使用者 • Unblinding phase使用者計算S = r1-1(T – r2Pub1)此時簽章-訊息組為(S,m,C) • Verification phase驗證式子e(S, P) = e(H(m || C), Pub1)e(C, Pub2)
Outline • Introduction • Preliminaries • Randomized blind signature • Performance and security Analysis • Conclusion
Performance and security Analysis [11]A. Boldyreva [12]H. Elkamchouchi, Y. Abouelseoud [13]Y. Yu, S. Zheng, Y. Yang [14] [15]F. Zhang, K. Kim
Outline • Introduction • Preliminaries • Randomized blind signature • Performance and security Analysis • Conclusion
Conclusion • 本文提出了一個提供具有隨機屬性的pairing-based盲簽章並正式的證明此簽章具有unlinkability, unforgeability,和randomization properties。 • 本文提出的方法為第一個可證明安全的隨機化盲簽章