80 likes | 403 Views
2-3: Measures of Central Tendency. A typical, or central entry of a data set. MEAN: average µ=population mean = Σ x/N =sum of data÷population x = sample mean = Σ x/n = sum of data ÷ sample MEDIAN: middle put in numerical order Find middle #, or add 2 middle #’s & ÷ 2
E N D
2-3: Measures of Central Tendency • A typical, or central entry of a data set. • MEAN: average µ=population mean = Σx/N =sum of data÷population x = sample mean = Σx/n = sum of data ÷ sample • MEDIAN: middle put in numerical order Find middle #, or add 2 middle #’s & ÷ 2 • MODE: most frequent
Find the mean, median & mode 500 840 470 480 420 440 440 500 840 470 480 420 440 Mean Median Mode • Mean • Median • Mode
Find the mean, median & mode 500 840 470 480 420 440 440 500 840 470 480 420 440 Mean 500+840+470+480+420+440 = 3150 3150/6 = 525 Median Mode • Mean 500+840+470+480+420+440+ 440 = 3590 3590/7 = 512.857 ≈ 513 • Median • Mode
Find the mean, median & mode 500 840 470 480 420 440 440 500 840 470 480 420 440 Mean 500+840+470+480+420+440 = 3150 3150/6 = 525 Median 420 440 470 480 500 840 2 mids: 470 +480 =950/2=475 Mode • Mean 500+840+470+480+420+440+ 440 = 3590 3590/7 = 512.857 ≈ 513 • Median 420 440 440 470 480 500 840 middle entry is 470 • Mode
Find the mean, median & mode 500 840 470 480 420 440 440 500 840 470 480 420 440 Mean 500+840+470+480+420+440 = 3150 3150/6 = 525 Median 420 440 470 480 500 840 2 mids: 470 +480 =950/2=475 Mode: none • Mean 500+840+470+480+420+440+ 440 = 3590 3590/7 = 512.857 ≈ 513 • Median 420 440 440 470 480 500 840 middle entry is 470 • Mode: 440 occurs most
Measures of Central Tendency • Bimodal: If 2 numbers occur MOST frequently. 2 modes exist • Outlier: A data entry very far away from all the other data. Can affect the mean. Sometimes outliers are removed from data before computing central tendencies.