1 / 64

Plan for today

Plan for today. An example with 3 variables Face ratings 1: age, gender, and attractiveness Histograms and scatter plots Using symbols and colors to visually segment data Full and partial correlations 3D scatter plots Understanding intransitive correlations

judah
Download Presentation

Plan for today

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plan for today • An example with 3 variables Face ratings 1: age, gender, and attractiveness • Histograms and scatter plots • Using symbols and colors to visually segment data • Full and partial correlations • 3D scatter plots • Understanding intransitive correlations Face ratings 2: dominance, neoteny, and attractiveness • 3D scatter plots • Stepwise and full regression • Fully crossed data • Surface plots • Time permitting: simplifying high-dimensional data • Principal components analysis (PCA)

  2. Face ratings (with Corinne Olafsen ’14) Gender? Age? Attractiveness? 76 raters x 276 faces x 3 characteristics

  3. Face ratings (with Corinne Olafsen ’14) Mean data across 76 raters 279 faces : 3 characteristics

  4. Exploratory look at the data: histograms • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714];

  5. Exploratory look at the data: histograms • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; >> figure(101) >> hist(age2);

  6. Exploratory look at the data: histograms • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; >> figure(102) >> hist(gender2);

  7. Exploratory look at the data: histograms • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; >> figure(103) >> hist(attr2);

  8. 3D Histograms! • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; >> figure(104) >> hist(age2, gender2); >> xlabel(‘Age’); ylabel(‘Gender’);

  9. Looking at 2 variables at a time • Pairwise scatter plots • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714];

  10. Looking at 2 variables at a time • Pairwise scatter plots • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; (1) Attractiveness versus Gender In Matlab: >> figure(1); set(gca,'fontsize',16); >> plot(gender2, attr2, '.k'); >> xlabel('Gender (1=f, 4=m)') >> ylabel('Attractiveness (1-4)’)

  11. Looking at 2 variables at a time • Pairwise scatter plots • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; (1) Attractiveness versus Gender In Matlab: >> figure(1); set(gca,'fontsize',16); >> plot(gender2, attr2, '.k'); >> xlabel('Gender (1=f, 4=m)') >> ylabel('Attractiveness (1-4)’)

  12. Looking at 2 variables at a time • Pairwise scatter plots • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; (2) Attractiveness versus Age In Matlab: >> figure(2); set(gca,'fontsize',16); >> plot(age2, attr2, '.k'); >> xlabel(’Age (years)') >> ylabel('Attractiveness (1-4)’)

  13. Looking at 2 variables at a time • Pairwise scatter plots • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; (2) Attractiveness versus Age In Matlab: >> figure(2); set(gca,'fontsize',16); >> plot(age2, attr2, '.k'); >> xlabel(’Age (years)') >> ylabel('Attractiveness (1-4)’)

  14. Looking at 2 variables at a time • Pairwise scatter plots • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; (3) Age versus Gender In Matlab: >> figure(3); set(gca,'fontsize',16); >> plot(gender2, age2, '.k'); >> xlabel(’Gender (1=f, 4=m)’) >> ylabel(’Age (years)')

  15. Looking at 2 variables at a time • Pairwise scatter plots • In Matlab: >> age2 = [2.0517 1.6724 2.0517 … 3.9138]; >> gender2 = [38.1034 28.2759 37.7586 … 38.9655]; >> attr2 = [2.1429 2.3143 1.6571 … 1.7714]; (3) Age versus Gender In Matlab: >> figure(3); set(gca,'fontsize',16); >> plot(gender2, age2, '.k'); >> xlabel(’Gender (1=f, 4=m)’) >> ylabel(’Age (years)')

  16. Breaking it down • Attractiveness versus age (using different symbols for gender) In Matlab: >> figure(801); set(gca,'fontsize',16); >> m2 = find(gender2>2.5); >> plot(age2(m2),attr2(m2),'.b', 'markersize',25); >> hold on >> f2 = find(gender2<=2.5); >> plot(age2(f2),attr2(f2),'.r', 'markersize',25); >> xlabel('Age'); ylabel('Attractiveness (1-4)'); >> legend({'male' 'female'});

  17. Breaking it down • Attractiveness versus age (using different symbols for gender) In Matlab: >> figure(801); set(gca,'fontsize',16); >> m2 = find(gender2>2.5); >> plot(age2(m2),attr2(m2),'.b', 'markersize',25); >> hold on >> f2 = find(gender2<=2.5); >> plot(age2(f2),attr2(f2),'.r', 'markersize',25); >> xlabel('Age'); ylabel('Attractiveness (1-4)'); >> legend({'male' 'female'});

  18. Breaking it down • Attractiveness versus gender (using different symbols for gender) In Matlab: >> figure(802); set(gca,'fontsize',16); >> plot(gender2(m2),attr2(m2),'.b', 'markersize',25); >> hold on >> plot(gender2(f2),attr2(f2),'.r', 'markersize',25); >> xlabel(’Gender'); ylabel('Attractiveness (1-4)');

  19. Breaking it down • Attractiveness versus gender (using different symbols for gender) In Matlab: >> figure(802); set(gca,'fontsize',16); >> plot(gender2(m2),attr2(m2),'.b', 'markersize',25); >> hold on >> plot(gender2(f2),attr2(f2),'.r', 'markersize',25); >> xlabel(’Gender'); ylabel('Attractiveness (1-4)');

  20. Breaking it down • Correlations between gender and attractiveness? Overall: >> [rp] = corr(gender2, attr2) r = -0.2797 p = 2.3604e-06

  21. Breaking it down • Correlations between gender and attractiveness? Overall: >> [rp] = corr(gender2, attr2) r = -0.2797 p = 2.3604e-06 Just males: >> [rp] = corr(gender2(m2), attr2(m2)) r = 0.0307 p = 0.7028

  22. Breaking it down • Correlations between gender and attractiveness? Overall: >> [rp] = corr(gender2, attr2) r = -0.2797 p = 2.3604e-06 Just males: >> [rp] = corr(gender2(m2), attr2(m2)) r = 0.0307 p = 0.7028 Just females: >> [rp] = corr(gender2(f2), attr2(f2)) r = -0.5560 p = 5.2062e-11

  23. Putting it all together with color Hue  Gender Brightness  Age >> figure(804); clf; set(gcf,'color','w'); set(gca,'fontsize',16); >> for i=1:length(m2) markercolor = [0 0 1-age2(m2(i))-min(age2(m2)))/(max(age2(m2))-min(age2(m2)))]; plot(gender2(m2(i)),attr2(m2(i)),'.', 'markersize',35,'color’,markercolor); hold on >> end >> for i=1:length(f2) markercolor = [1-age2(f2(i))-min(age2(f2)))/(max(age2(f2))-min(age2(f2))) 0 0]; plot(gender2(f2(i)),attr2(f2(i)),'.', 'markersize',35,'color' ,’markercolor’); >> end >> xlabel('Gender');ylabel('Attractiveness');

  24. Putting it all together with color Blue = Male Red = Female Brighter = younger Darker = older

  25. 3D scatter plots >> figure(803); clf; set(gcf,'color','w'); set(gca,'fontsize',16); >> plot3(age2,gender2,attr2, '.k’) >> xlabel('Age'); ylabel('Gender');zlabel('Attractiveness'); Figure 803

  26. 3D scatter plots with colors >> figure(805); clf; set(gcf,'color','w'); set(gca,'fontsize',16); for i=1:length(m2) markercolor = [0 0 1-(age2(m2(i))-min(age2(m2)))/(max(age2(m2))-min(age2(m2)))]; plot3(age2(m2(i)),gender2(m2(i)),attr2(m2(i)),'.', 'markersize',25,'color',markercolor); hold on end for i=1:length(f2) markercolor = [1-(age2(f2(i))-min(age2(f2)))/(max(age2(f2))-min(age2(f2))) 0 0]; plot3(age2(f2(i)),gender2(f2(i)),attr2(f2(i)),'.', 'markersize',25, 'color',markercolor) end xlabel('Age'); ylabel('Gender');zlabel('Attractiveness'); Figure 805

  27. New example:Dominance, neoteny, and attractiveness (with Brianna Jeska ’15)

  28. New example:Dominance, neoteny, and attractiveness (with Brianna Jeska ’15) • Predictions: • Dominance  attractiveness • Neoteny  attractiveness • But dominance is negatively related to neoteny (???)

  29. Dominance, neoteny, and attractiveness Data: 13 raters x 39 faces x 3 characteristics Mean data across 13 raters 39 faces : 3 characteristics

  30. Dominance, neoteny, and attractiveness • In Matlab: • >> dom = [4.2308 • 4.4615 • 3.0769 • … • 4.3077]; • >> neot = [3.6154 • 2.9231 • 2.7692 • … • 3.6923]; • >> attr = [3.7692 • 2.9231 • 2.6923 • … • 3.0769];

  31. Pairwise scatter plots and correlations Attractiveness vs. neoteny In Matlab: >> figure(1); set(gca,'fontsize',16); >> plot(dom,attr,'.k'); >> xlabel('Neoteny') >> ylabel('Attractiveness'); >> [r p] = corr(neot,attr) r = 0.2359 p = 0.1483 marginally correlated

  32. Pairwise scatter plots and correlations Attractiveness vs. dominance In Matlab: >> figure(2); set(gca,'fontsize',16); >> plot(neot,attr,'.k'); >> xlabel('Dominance') >> ylabel('Attractiveness'); >> [r p] = corr(dom,attr) r = 0.5251 p = 5.9848e-04 strongly correlated

  33. Pairwise scatter plots and correlations Neoteny vs. dominance? In Matlab: >> figure(3); set(gca,'fontsize',16); >> plot(dom,neot,'.k'); >> xlabel('Dominance') >> ylabel('Neoteny'); >> [r p] = corr(dom,neot) r = -0.5032 p = 0.0011 negatively correlated!

  34. 3D scatter plots >> figure(4); set(gca,'fontsize',16); >> plot3(dom,neot,attr,'.k'); >> xlabel('Dominance'); ylabel('Neoteny'); zlabel('Attractiveness'); Figure 4

  35. 3D scatter plots >> figure(4); set(gca,'fontsize',16); >> plot3(dom,neot,attr,'.k'); >> xlabel('Dominance'); ylabel('Neoteny'); zlabel('Attractiveness'); Figure 4 >> view([0 0]) attr vs. dom

  36. 3D scatter plots >> figure(4); set(gca,'fontsize',16); >> plot3(dom,neot,attr,'.k'); >> xlabel('Dominance'); ylabel('Neoteny'); zlabel('Attractiveness'); Figure 4 >> view([90 0]) attr vs. neot

  37. 3D scatter plots >> figure(4); set(gca,'fontsize',16); >> plot3(dom,neot,attr,'.k'); >> xlabel('Dominance'); ylabel('Neoteny'); zlabel('Attractiveness'); Figure 4 >> view([0 90]) neot vs. dom

  38. Stepwise and full regression Stepwise regression model: >> stepwise([domneot],attr)

  39. Stepwise and full regression Stepwise regression model: >> stepwise([domneot],attr) Full regression model: >> c = regress(attr,[domneot]) c = 0.6460 0.3284 (coefficients of dom and neot)

  40. Stepwise and full regression Stepwise regression model: >> stepwise([domneot],attr) Full regression model: >> c = regress(attr,[domneot]) c = 0.6460 0.3284 (coefficients of dom and neot) >> y = c(1)*dom + c(2)*neot; >>figure(5); set(gca,'fontsize',16); >> plot(y,attr,'.'); >> xlabel('Attractivenesspredictor'); >> ylabel('Attractiveness');

  41. Surface plots • Requirements: • 2 independent variables • Data for very combination of values on the independent variables • For example: a lexical decision task • IVs: • Orientation of the string (0°, 45°, 90°, 135°, 180°) • String length (3 letters, 4 letters, 5 letters, 6 letters) • DV: • Reaction time

  42. Surface plots • Made up data:

  43. Surface plots • Made up data: In Matlab: >> v = [1.25 1.23 1.32 1.4 1.42 1.41 1.45 1.48 1.43 1.53 1.54 1.59 1.78 1.81 1.91 2.03 2.15 2.33 1.6 1.68 1.63 1.81 2.32 2.71 2.89 2.98 2.9 1.86 1.89 1.83 2.01 2.41 2.99 3.25 3.49 3.78 2.01 1.98 2.07 2.48 3.02 3.79 4.08 4.3 4.28 2.34 2.45 2.6 3.15 3.87 4.03 4.52 4.86 4.69]; >> figure(11) >> surf(v)

  44. Surface plots • Made up data: In Matlab: >> v = [1.25 1.23 1.32 1.4 1.42 1.41 1.45 1.48 1.43 1.53 1.54 1.59 1.78 1.81 1.91 2.03 2.15 2.33 1.6 1.68 1.63 1.81 2.32 2.71 2.89 2.98 2.9 1.86 1.89 1.83 2.01 2.41 2.99 3.25 3.49 3.78 2.01 1.98 2.07 2.48 3.02 3.79 4.08 4.3 4.28 2.34 2.45 2.6 3.15 3.87 4.03 4.52 4.86 4.69]; >> figure(11) >> surf(v) Figure 11

  45. Surface plots • Made up data: In Matlab: >> v = [1.25 1.23 1.32 1.4 1.42 1.41 1.45 1.48 1.43 1.53 1.54 1.59 1.78 1.81 1.91 2.03 2.15 2.33 1.6 1.68 1.63 1.81 2.32 2.71 2.89 2.98 2.9 1.86 1.89 1.83 2.01 2.41 2.99 3.25 3.49 3.78 2.01 1.98 2.07 2.48 3.02 3.79 4.08 4.3 4.28 2.34 2.45 2.6 3.15 3.87 4.03 4.52 4.86 4.69]; >> figure(11) >> surf(v) OR >> figure(12); set(gca,'fontsize',16) >> a = [0:22.5:180]; >> wl = [3:8]; >> surf(a,wl,v); >> xlabel('Angle') >> ylabel('Word length') >> zlabel('Reaction time') Figure 12

  46. Dimensionality reduction • Principal components analysis • A type of factor analysis, assuming normally distributed variables • Reduces high-dimensional data into a manageable number of dimensions

  47. Dimensionality reduction • Principal components analysis • A type of factor analysis, assuming normally distributed variables • Reduces high-dimensional data into a manageable number of dimensions • Example: face space

  48. Parameterizing silhouettes Davidenko, Journal of Vision, 2007

  49. Parameterizing silhouettes Davidenko, Journal of Vision, 2007

More Related