340 likes | 473 Views
Project Management. Definitions. Activity-on-Node (A-O-N) - Network diagram convention in which nodes designate activities Activity-on-Arrow (A-O-A) - Network diagram convention in which arrows designate activities. Activity. (arrow). Definitions.
E N D
Definitions • Activity-on-Node (A-O-N) - Network diagram convention in which nodes designate activities • Activity-on-Arrow (A-O-A) - Network diagram convention in which arrows designate activities Activity (arrow)
Definitions • Path - a sequence of activities that leads from the starting node to the finishing node. Activity A Activity B Event 1 Event 2 Event 3
How many paths are in this network? C (3) Event 5 Event 2 A (5) H (2) Event 1 F (1) D (2) Event 6 Event 4 B (2) G (4) Event 3 E (3)
1-2-5-6 C (3) Event 5 Event 2 A (5) H (2) Event 1 F (1) D (2) Event 6 Event 4 B (2) G (4) Event 3 E (3)
C (3) Event 5 Event 2 A (5) H (2) Event 1 F (1) D (2) Event 6 Event 4 B (2) G (4) Event 3 E (3)
1-2-4-6 C (3) Event 5 Event 2 A (5) H (2) Event 1 F (1) D (2) Event 6 Event 4 B (2) G (4) Event 3 E (3)
1-3-4-5-6 C (3) Event 5 Event 2 A (5) H (2) Event 1 F (1) D (2) Event 6 Event 4 B (2) G (4) Event 3 E (3)
1-3-4-6 C (3) Event 5 Event 2 A (5) H (2) Event 1 F (1) D (2) Event 6 Event 4 B (2) G (4) Event 3 E (3)
Critical Path - The longest path - determines the project duration. C (3) Event 5 Event 2 A (5) H (2) Event 1 F (1) D (2) Event 6 Event 4 B (2) G (4) Event 3 1-2-5-6 (10) 1-2-4-5-6 (10) 1-2-4-6 (11) 1-3-4-6 (9) 1-3-4-5-6 (8) E (3)
Critical Activities - activities on the critical path C (3) Event 5 Event 2 A (5) H (2) Event 1 F (1) D (2) Event 6 Event 4 B (2) G (4) Event 3 E (3) A-D-G
Definitions • Slack - Allowable slippage for a path; the difference between the length of a path and the length of the critical path.
Algorithm Definitions • Earliest Start (ES) - the earliest time an activity can start, assuming all preceding activities start as early as possible • Earliest Finish (EF) - the earliest time an activity can finish • Latest Start (LS) - the latest time the activity can start and not delay the project • Latest Finish (LF) - the latest time the activity can finish and not delay the project
Algorithm Formulas EF = ES + t EF ES t
6 4 2 8 11 3 1 5 1 6 4 9 3
8 0 0 Example 2 6 4 2 11 1 5 1 6 4 9 3
8 8 0 0 4 6 4 2 11 1 5 1 6 4 9 3
8 8 0 8 0 4 4 Example 2 8 6 4 2 11 1 5 1 6 4 9 3
8 8 0 8 0 13 19 4 4 14 8 6 4 2 11 1 5 1 6 4 9 3
3 8 8 14 0 6 8 0 13 19 10 4 4 Example 2 14 8 6 4 2 11 1 5 1 6 4 9 3
3 8 17 8 14 0 6 8 0 13 19 10 4 4 14 8 6 4 2 11 1 5 1 6 4 9 3
3 8 17 8 14 0 8 0 13 19 4 4 14 8 6 4 2 11 1 5 1 6 4 9 3
3 8 17 8 14 0 8 0 13 19 4 4 14 8 6 4 2 11 1 5 1 6 4 19 9 3
3 8 17 8 14 0 8 0 13 19 4 4 14 8 6 4 2 11 1 5 1 6 4 19 20 9 3
Algorithm Formulas EF = ES + t LS = LF - t LS LF EF ES t
3 8 17 8 14 0 20 19 20 8 0 13 19 4 4 14 8 6 4 2 11 1 5 1 6 4 9 3
3 8 17 8 14 0 19 20 19 20 8 0 13 19 4 4 14 8 6 4 2 11 1 5 1 6 4 9 3
3 19 8 17 8 14 0 19 20 19 19 20 8 0 13 19 19 4 4 14 8 6 4 2 11 1 5 1 6 4 9 3
3 19 16 8 17 8 14 0 19 20 8 19 19 20 8 0 13 19 10 19 4 4 14 8 6 4 2 11 1 5 1 6 4 9 3
3 19 16 8 17 8 14 0 19 20 8 19 19 20 8 0 13 19 10 19 10 4 4 16 14 8 6 4 2 11 1 5 1 6 4 9 3
3 19 16 8 17 8 14 0 19 20 8 6 19 19 20 8 0 13 19 10 19 10 4 4 16 10 14 8 6 4 2 11 1 5 1 6 4 9 3
3 19 16 8 17 8 14 0 19 20 8 6 19 19 20 8 0 13 19 10 19 10 4 4 16 10 14 8 6 4 2 11 1 5 1 6 4 9 3
3 19 16 8 17 8 14 0 19 20 8 6 19 19 20 8 0 13 19 10 19 10 4 4 16 10 14 8 6 4 2 8 11 1 5 1 6 4 9 3
3 19 16 8 17 8 14 0 19 20 8 6 19 19 20 8 0 13 19 10 19 10 4 4 16 10 14 8 6 4 2 8 0 11 1 5 1 6 4 9 3