1 / 17

Symmetry operator 2 -Symmetry operator 4

Symmetry operator 2 -Symmetry operator 4. - x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼. Symmetry operator 2 -Symmetry operator 4. - x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼. Plug in u. u=-½-x-y

judsonc
Download Presentation

Symmetry operator 2 -Symmetry operator 4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Symmetry operator 2-Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼

  2. Symmetry operator 2-Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Plug in u. u=-½-x-y 0.18=-½-x-y 0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y Add two equations and solve for y. 0.68=-x-y +(0.72= x-y) 1.40=-2y -0.70=y Plug y into first equation and solve for x. 0.68=-x-y 0.68=-x-(-0.70) 0.02=x

  3. Symmetry operator 2-Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Plug in u. u=-½-x-y 0.18=-½-x-y 0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y Add two equations and solve for y. 0.68=-x-y +(0.72= x-y) 1.40=-2y -0.70=y Plug y into first equation and solve for x. 0.68=-x-y 0.68=-x-(-0.70) 0.02=x

  4. Symmetry operator 2-Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Plug in u. u=-½-x-y 0.18=-½-x-y 0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y Add two equations and solve for y. 0.68=-x-y +(0.72= x-y) 1.40=-2y -0.70=y Plug y into first equation and solve for x. 0.68=-x-y 0.68=-x-(-0.70) 0.02=x

  5. Symmetry operator 2-Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Plug in u. u=-½-x-y 0.18=-½-x-y 0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y Add two equations and solve for y. 0.68=-x-y +(0.72= x-y) 1.40=-2y -0.70=y Plug y into first equation and solve for x. 0.68=-x-y 0.68=-x-(-0.70) 0.02=x

  6. Symmetry operator 3 -Symmetry operator 6 ½-y ½+x ¾+z - ( -y -x ½-z) ½ ½+2x ¼+2z Plug in v. v= ½+2x 0.48= ½+2x -0.02=2x -0.01=x Plug in w. w= ¼+2z 0.24= ¼+2z -0.01=2z -0.005=z

  7. Symmetry operator 3 -Symmetry operator 6 ½-y ½+x ¾+z - ( -y -x ½-z) ½ ½+2x ¼+2z Plug in v. v= ½+2x 0.46= ½+2x -0.04=2x -0.02=x Plug in w. w= ¼+2z 0.24= ¼+2z -0.01=2z -0.005=z

  8. Symmetry operator 3 -Symmetry operator 6 ½-y ½+x ¾+z - ( -y -x ½-z) ½ ½+2x ¼+2z Plug in v. v= ½+2x 0.46= ½+2x -0.04=2x -0.02=x Plug in w. w= ¼+2z 0.24= ¼+2z -0.01=2z -0.005=z

  9. From step 3 Xstep3= 0.02 ystep3=-0.70 zstep3=?.??? From step 4 Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 Clearly, Xstep3does not equalXstep4 . Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02. For example, let’s use: -x, -y, z And apply it to all coordinates in step 3. xstep3-transformed = - (+0.02) = -0.02 ystep3-transformed = - (- 0.70)= +0.70 Now xstep3-transformed = xstep4 And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z: Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005 Or simply, x=-0.02, y=0.70, z=-0.005 The x, y coordinate in step 3 describes one of the heavy atom positions in the unit cell. The x, z coordinate in step 4 describes a symmetry related copy. We can’t combine these coordinates directly. They don’t describe the same atom. Perhaps they even referred to different origins. How can we transform x, y from step 3 so it describes the same atom as x and z in step 4?

  10. From step 3 Xstep3= 0.02 ystep3=-0.70 zstep3=?.??? Cheshire Symmetry Operators for space group P43212 X, Y, Z -X, -Y, Z -Y, X, 1/4+Z Y, -X, 1/4+Z Y, X, -Z -Y, -X, -Z X, -Y, 1/4-Z -X, Y, 1/4-Z 1/2+X, 1/2+Y, Z 1/2-X, 1/2-Y, Z 1/2-Y, 1/2+X, 1/4+Z 1/2+Y, 1/2-X, 1/4+Z 1/2+Y, 1/2+X, -Z 1/2-Y, 1/2-X, -Z 1/2+X, 1/2-Y, 1/4-Z 1/2-X, 1/2+Y, 1/4-Z X, Y, 1/2+Z -X, -Y, 1/2+Z -Y, X, 3/4+Z Y, -X, 3/4+Z Y, X, 1/2-Z -Y, -X, 1/2-Z X, -Y, 3/4-Z -X, Y, 3/4-Z 1/2+X, 1/2+Y, 1/2+Z 1/2-X, 1/2-Y, 1/2+Z 1/2-Y, 1/2+X, 3/4+Z 1/2+Y, 1/2-X, 3/4+Z 1/2+Y, 1/2+X, 1/2-Z 1/2-Y, 1/2-X, 1/2-Z 1/2+X, 1/2-Y, 3/4-Z 1/2-X, 1/2+Y, 3/4-Z From step 4 Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 Clearly, Xstep3does not equalXstep4 . Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02. For example, let’s use: -x, -y, z And apply it to all coordinates in step 3. xstep3-transformed = - (+0.02) = -0.02 ystep3-transformed = - (- 0.70)= +0.70 Now xstep3-transformed = xstep4 And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z: Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005 Or simply, x=-0.02, y=0.70, z=-0.005

  11. From step 3 Xstep3= 0.02 ystep3=-0.70 zstep3=?.??? Cheshire Symmetry Operators for space group P43212 X, Y, Z -X, -Y, Z -Y, X, 1/4+Z Y, -X, 1/4+Z Y, X, -Z -Y, -X, -Z X, -Y, 1/4-Z -X, Y, 1/4-Z 1/2+X, 1/2+Y, Z 1/2-X, 1/2-Y, Z 1/2-Y, 1/2+X, 1/4+Z 1/2+Y, 1/2-X, 1/4+Z 1/2+Y, 1/2+X, -Z 1/2-Y, 1/2-X, -Z 1/2+X, 1/2-Y, 1/4-Z 1/2-X, 1/2+Y, 1/4-Z X, Y, 1/2+Z -X, -Y, 1/2+Z -Y, X, 3/4+Z Y, -X, 3/4+Z Y, X, 1/2-Z -Y, -X, 1/2-Z X, -Y, 3/4-Z -X, Y, 3/4-Z 1/2+X, 1/2+Y, 1/2+Z 1/2-X, 1/2-Y, 1/2+Z 1/2-Y, 1/2+X, 3/4+Z 1/2+Y, 1/2-X, 3/4+Z 1/2+Y, 1/2+X, 1/2-Z 1/2-Y, 1/2-X, 1/2-Z 1/2+X, 1/2-Y, 3/4-Z 1/2-X, 1/2+Y, 3/4-Z From step 4 Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 Clearly, Xstep3does not equalXstep4 . Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02. For example, let’s use: -x, -y, z And apply it to all coordinates in step 3. xstep3-transformed = - (+0.02) = -0.02 ystep3-transformed = - (- 0.70)= +0.70 Now xstep3-transformed = xstep4 And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z: Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005 Or simply, x=-0.02, y=0.70, z=-0.005

  12. From step 3 Xstep3= 0.02 ystep3=-0.70 zstep3=?.??? Cheshire Symmetry Operators for space group P43212 X, Y, Z -X, -Y, Z -Y, X, 1/4+Z Y, -X, 1/4+Z Y, X, -Z -Y, -X, -Z X, -Y, 1/4-Z -X, Y, 1/4-Z 1/2+X, 1/2+Y, Z 1/2-X, 1/2-Y, Z 1/2-Y, 1/2+X, 1/4+Z 1/2+Y, 1/2-X, 1/4+Z 1/2+Y, 1/2+X, -Z 1/2-Y, 1/2-X, -Z 1/2+X, 1/2-Y, 1/4-Z 1/2-X, 1/2+Y, 1/4-Z X, Y, 1/2+Z -X, -Y, 1/2+Z -Y, X, 3/4+Z Y, -X, 3/4+Z Y, X, 1/2-Z -Y, -X, 1/2-Z X, -Y, 3/4-Z -X, Y, 3/4-Z 1/2+X, 1/2+Y, 1/2+Z 1/2-X, 1/2-Y, 1/2+Z 1/2-Y, 1/2+X, 3/4+Z 1/2+Y, 1/2-X, 3/4+Z 1/2+Y, 1/2+X, 1/2-Z 1/2-Y, 1/2-X, 1/2-Z 1/2+X, 1/2-Y, 3/4-Z 1/2-X, 1/2+Y, 3/4-Z From step 4 Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 Clearly, Xstep3does not equalXstep4 . Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02. For example, let’s use: -x, -y, z And apply it to all coordinates in step 3. xstep3-transformed = - (+0.02) = -0.02 ystep3-transformed = - (- 0.70)= +0.70 Now xstep3-transformed = xstep4 And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z: Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005 Or simply, x=-0.02, y=0.70, z=-0.005

  13. Use x,y,z to predict the position of a non-Harker Patterson peak • x,y,z vs. –x,y,z ambiguity remains In other words x=-0.02, y=0.70, z=-0.005 or x=+0.02, y=0.70, z=-0.005 could be correct. • Both satisfy the difference vector equations for Harker sections • Only one is correct. 50/50 chance • Predict the position of a non Harker peak. • Use symop1-symop5 • Plug in x,y,z solve for u,v,w. • Plug in –x,y,z solve for u,v,w • I have a non-Harker peak at u=0.28 v=0.28, w=0.0 • The position of the non-Harker peak will be predicted by the correct heavy atom coordinate.

  14. x y z -( y x -z) x-y -x+y 2z symmetry operator 1 -symmetry operator 5 u v w First, plug in x=-0.02, y=0.70, z=-0.005 u=x-y = -0.02-0.70 =-0.72 v=-x+y= +0.02+0.70= 0.72 w=2z=2*(-0.005)=-0.01 The numerical value of these co-ordinates falls outside the section we have drawn. Lets transform this uvw by Patterson symmetry v,-u,-w. -0.72,0.72,-0.01 becomes -0.72,-0.72,0.01 then add 1 to u and v 0.28, 0.28, 0.01 This corresponds to the peak shown u=0.28, v=0.28, w=0.01 Thus, x=-0.02, y=0.70, z=-0.005 is correct. Hurray! We are finished! In the case that the above test failed, we would change the sign of x.

More Related