100 likes | 423 Views
Section 2.5. Reason Using Properties from Algebra. Algebraic Properties. Solving equations for x. Solve 6x+2= -3x-16 for x. Write your reason for each step. 6x+2= -3x-16 +3x +3x 9x+2= -16 -2 -2 9x= -18 X=- 2. Given Addition Property Subtraction Property
E N D
Section 2.5 Reason Using Properties from Algebra
Solving equations for x Solve 6x+2= -3x-16 for x. Write your reason for each step. • 6x+2= -3x-16 • +3x +3x • 9x+2= -16 • -2 -2 • 9x= -18 • X=- 2 • Given • Addition Property • Subtraction Property • Division Property
Try in your notebooks Solve 3x+8= -4x-34 for x. Write your reason for each step. • 3x+8= -4x-34 • +4x +4x • 7x+8= -34 • -8 -8 • 7x= -42 • x= -6 • Given • Addition Property • Subtraction Property • Division Property
Solve the equations for x. Write your reason for each step • 4x+9= -3x+2 • 14x+3(7-x) =-1
Page 108 3-14 Homework: page 111 Quiz 2.4-2.5 Complete from the book
How do we write a proof? In the diagram, m∠ABD=m∠CBE. Show that m∠1=m∠3. A • m∠ABD=m∠CBE • m∠ABD-m∠2= m∠1 • m∠CBE-m∠2= m∠3 • m∠ABD-m∠2= m∠CBE-m∠2 • m∠1= m∠3 • Given • Angle Addition Postulate • Angle Addition Postulate • Substitution Property • Substitution Property 1 C B 2 3 D E What do we know? What’s given to us? What do I need to do to get angle 1? What about angle 3? How are these angles related? How do I know they are equal?
Determine whether to use the symmetric property, reflexive Property or transitive property • If m∠6= m∠7, then m∠7=m∠6. • Symmetric Property • If JK=KL and KL=MN, then JK=MN. • Transitive Property • m∠6=m∠6. • Reflexive Property • If m∠A=m ∠B and m ∠B=m ∠C, then m ∠A=m ∠C. • Transitive Property • If XY=WZ, then WZ=XY. • Symmetric Property • AB=AB • Reflexive Property
Complete in your notebooks. Page 109 15, 16, 21-25, 28, 31, 33 Extra practice