480 likes | 659 Views
start. Calculations for the electronic transport in molecular nanostructures. Gotthard Seifert Institut für Physikalische Chemie und Elektrochemie Technische Universität Dresden. Greens-Function Method Calculation of Transport Properties in molecular Systems. Aldo di Carlo!.
E N D
Calculations for the electronic transport in molecular nanostructures Gotthard Seifert Institut für Physikalische Chemie und Elektrochemie Technische Universität Dresden
Greens-Function Method Calculation of Transport Properties in molecular Systems Aldo di Carlo! Model: Molecule (M) and two contacts (α, β) Green‘s FunctionG(E) S,H – Overlap- and Hamilton Matrices Calculation of H and S matrices
LCAO Ansatz Atomic Orbitals - AO Slater Type Orbitals - STO
Hamilton matrix Overlap matrix Density-Functional based „tight binding“ DF-TB
Total Energy in DFT - EDFT - electron density - magnetization density Density fluctuations:
Approximations: Minimal(valence) basis in LCAO ansatz Neglect of pseudopotential terms in h0μν2-center approximation -Mulliken gross population at j 2nd order approximation in energy
Cancellation of „double counting terms“ U(Rjk) EB/eV R/aB Li2 - dimer EB - U(Rjk) Short range repulsive energy U(Rjk)
Hamiltonian:: Self Consistent Charge method SCC-DFTB
Transmission coefficient T(E) with Γα- Spectral functions of the Selfenergy-operators
Electronic Current – I Keldysh formalism Contact scattering functions Scattering function Inelastic processes (e-e, e-p intereaction) Non-equilibrium Green‘s functions
External bias – V Modification of the Hamiltonian matrix elements Calculation of I-V curves
Application ∞ Examples
Nanotubes of Carbon • S. Iijima Nature354 (1991) 56 ~1nm ~ μm Single-wall Nanotubes – SWNT‘s
(10,0) zig-zag tube 10-10 arm chair tube
Electronic Structure of Nanotubes Band-structure graphene monolayer k Rolling „Zone folding“
zig-zag tube (n,0) mod(n,3)=0 mod(n,3)≠0
Functionalizationof Carbon Nanotubes? Graphite > Lamellar intercalation: Li, Na, K, Rb; Cl, Br, I > Lamellar covalent: O, F, S Fluorination
Fluorination 2Cgraphite + F2 2CF F sp2-Cgraphite sp3-C F
Carbon Nanotubes fluorination 2C + F2 2CF 2C+1/2F2 C2F
C2F – fluorine decoration pattern F Ethylen - like n,0
C2F – fluorine decoration pattern Ethylen - like
Density-of-States EF 10,0 CNT 10,0 C2F NT Large gap
C2F – fluorine decoration pattern n,0 F C trans-polyacetylen – like helical C ∞
C2F – fluorine decoration pattern Trans-polyacetylen – like helical C C ∞
Density-of-States 10,0 C2F NT Density-of-States small gap energy/eV
C2F – fluorine decoration pattern cis-polyacetylen – like chain C C ∞
Density-of-States 10,0 C2F NT Density-of-States no gap
Transmission cis-polyacetylen – like chain ethylen - like 10,0 C2F NanoTubes
Transmission as function of coverage C2F (10,0) Nanotube cis-polyacetylen – like chain
C2F (10,10) Nanotube chain (10,10) Nanotube
9,0 C2F NT ring HOMO –LUMO „aromatic“ π-states
Carbon Fluorine
Outlook/Problems • ->Contacts – Molecule interaction • -> electron-phonon interaction • -> electron-electron interaction? • -> non-adiabatic description • ->Applications • . • . • .
Thanks Aldo di Carlo (Rome) Thomas Niehaus (Paderborn) Nitesh Ranjan (Dresden)