1 / 10

Existence of Natural Monopoly in Multiproduct Firms

Existence of Natural Monopoly in Multiproduct Firms. Competition Policy and Market Regulation MEFI- Università di Pavia. Multiproduct Sub-additivity. Two products q 1 , q 2 Cost function . C(q 1 , q 2 ) Def .: q i a vector of the 2 products : q i = (q 1 i , q 2 i )

junior
Download Presentation

Existence of Natural Monopoly in Multiproduct Firms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ExistenceofNaturalMonopoly in MultiproductFirms Competition Policy and Market Regulation MEFI- Università di Pavia

  2. MultiproductSub-additivity • Twoproducts q1, q2 • Costfunction. C(q1, q2) • Def.: qi a vectorof the 2 products: qi = (q1i , q2i ) • N vectorssuchthat:∑i q1i=q1 and ∑i q2i=q2 • Sub-additivecostfunction: C(∑i q1i , ∑i q2i) = C (∑iqi) < ∑iC (qi)

  3. Whatdrivesmultiproductsub-additivity? • Economiesof scope: C(q1, q2)< C(q1,0)+ C(0, q2) • Multiproducteconomiesof scale • DecliningAverageCostfor a specificproduct • Decliningrayaveragecost (varyingquantitiesof a set of multiple products, bundled in fixedproportions)

  4. DecliningAverageIncrementalCost • Incrementalcostof production for q1 (holding q2constant): IC(q1I q2) = C(q1, q2) - C(0, q2) • Averageincrementalcost: AIC =[C(q1, q2) - C(0, q2)] /q1 If AIC ↓ when q1↑ :decliningaverageincrementalcostof q1 A measureof single producteconomiesof scale in a multiproductcontext We can seeif the costfunctionhasdecliningaverage IC foreachproduct

  5. Declining Ray AverageCosts • Fix the proportionof multiple products: (q1/q2= k) • Whathappenstocostsifweincreasebothproducts output holding K constant? • Does the averagecostof the bundle decreaseas the sizeof the bundle increases?

  6. Declining Ray AverageCosts • We can considerdifferentproportions k, and seeifwehaveeconomiesof scale alongeachray k in the q1, q2space • Wehavemultiproducteconomiesof scale foreachcombinationof q1/q2if: C(λ q1, λq2) < λC(q1,q2)

  7. Declining Ray AverageCosts: Examples • Consider C(q1,q2 ) = q1+ q2+ (q1q2)1/3 • Itischaracterizedbymultiproducteconomiesof scale as: λC(q1,q2)= λq1+ λq2+ λ (q1q2)1/3 C(λq1, λq2) = λq1+ λq2+ λ1/3(q1q2)1/3 and C(λq1, λq2) < λC(q1,q2)

  8. No Multiproductsub-additivity • HOWEVER thiscostfunctionexhibitsdiseconomiesof scopeas: C(q1,0) = q1 C(0, q2) = q2 C(q1,0)+ C(0, q2) = q1+ q2 < q1+ q2+ (q1q2)1/3 = C(q1,q2 ) • THEREFORE thiscostfunctionisnot sub-additive, despitemultiproducteconomiesof scale, aseconomiesof scope are lacking • Itis more convenientto produce the twoproducts in two separate firmsNo NaturalMonopoly

  9. An examplewithmultiproductsub-additivity • Sub-additivity in a multiproductcontextrequiresbothcostcomplementarity (economiesof scope) and multiproducteconomiesof scale, over at least some rangeof output. • Consider the followingcostfunction: C(q1,q2 ) = q11/4+ q21/4 -(q1q2)1/4 • Itexhibitseconomiesof scope (..look at -(q1q2)1/4 ) C(q1,0)+ C(0, q2) = q11/4+ q21/4 > q11/4+ q21/4 -(q1q2)1/4 = C(q1,q2 ) Then: C(q1,q2 ) < C(q1,0)+ C(0, q2)

  10. An examplewithmultiproductsub-additivity: C(q1,q2 ) = q11/4+ q21/4 -(q1q2)1/4 • Itexhibitsmultiproducteconomiesof scale (foranycombination K of the twooutputs the costof production ofthiscombinationincreaseslessthanproportionallywithanincrease in the scale of the bundle,… byvirtueofpower ¼ in the costfunction) • For the samereasonitexhibitsproductspecificeconomiesof scale (decliningaverage IC, at any output) • It can beshownitis a globallysub-additive costfunction (i.e. sub-additive at everylevelof output)

More Related