150 likes | 318 Views
Pengelolaan Polutan Udara di dalam Ruangan. Oleh Sudrajat PPLH- Unmul 2003. Bioaerosol Samplers. Numerous sampler types Some adapted from dust or particle samplers Some designed specifically for microbes
E N D
Pengelolaan Polutan Udara di dalam Ruangan Oleh Sudrajat PPLH- Unmul 2003
Bioaerosol Samplers • Numerous sampler types • Some adapted from dust or particle samplers • Some designed specifically for microbes • Few specifically for non-microbial bioaerosols (e.g. endotoxin), but generally thought samplers used for microbe collection are adaptable
Bioaerosol Samplers • Gravitational samplers (e.g. settle plates) • No special equipment only coated microscope slide, agar plates, etc. • Passive (non-volumetric), relies on collection of particles by gravity settling • Oversamples for larger particles • Poor for collection in turbulent air; affected by turbulent deposition or shadowing
Inertial Bioaerosol Samplers • Allow collection of particles by size selective sampling • Includes impactors, sieves, stacked sieves • Relies on particle tendency to deviate from air flow streamlines due to inertia • Particles deposited to solid or semi-solid surface
Spore Traps • E.g. Hirst, Burkhard, Air-o-cell, Allergenco • Initially designed for fungal spore and pollen • Sample at 10-20 Liters/minute • Particles impacted on to coated glass slide or adhesive tape • Advantages: non-selective, direct analysis after collection • Disadvantages: may mask problem species, does not assess viability
Impactors • Similar to spore trap, but collection on slide or agar plates • Several designs tend to undersample smaller particles; particle bounce can also be an issue • Used at air flows of 10-30 Liters/minute • Types: • Single Stage or Multistage (e.g. Anderson) • Rotary arm samplers (e.g. Rotorod, Mesosystems BT550) • Slit to agar samplers • Sieve Samplers and Stacked Sieves (e.g. SAS)
Impingers • Air drawn through liquid (e.g. water, broth, mineral oil), particles removed by impingement • Allows dilution • Problems with pass through, particle bounce, bubbling, evaporation of liquid loss of viability • Inlet efficiency decreased for particles above 10 microns • Sampling rate 0.1-15 liters/minute (12.5 for AGI 30) • Types: • AGI • Biosampler • Shipe • Multistage
Cyclones or Centrifugal Samplers • Creation of vortex creating sufficient inertia to trigger deposition of particles onto collection surface; recovered in liquid (cyclone) or semisolid medium (centrifugal) • Allows dilution; high air sampling rates (up to 75-1000 LPM for cyclones, 40-100 LPM for centrifugal samplers); small pressure drop • Oversamples larger particles (can be used as trap); poor collection below 5 micron • Can be used in series or paired with other samplers to overcome sampling bias (e.g. Innovatek)
Large Volume Aerosol Samplers • Biocapture BT 550 (Mesosystems) • Rotary arm impactor, liquid collection • 150L/min (~15 min) • Bioguardian (Innovatek) • Wet-walled multi cyclone, w/centrifugal impactor for removal of large particles • 100-1000L/min (1 min-12 hours) • Spincon (Sceptor) • Centrifugal wet concentrator, w/cyclonic preseparation • 450L/min (5 min-6 hours)