1 / 24

Engineering Economic Analysis

Engineering Economic Analysis. Chapter 8  Incremental Analysis. Y. X. $15. $10. Benefit-Cost Graph. Year X Y Y - X 0 -$10 -$20 $-10 1 15 28 13 MARR = 6% Y is preferred at RoR 40% over X at 50% Increment earns at 30%. Rejection. $20.

jwoodby
Download Presentation

Engineering Economic Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Engineering Economic Analysis Chapter 8  Incremental Analysis rd

  2. Y X $15 $10 Benefit-Cost Graph Year X Y Y - X 0 -$10 -$20 $-10 1 15 28 13 MARR = 6% Y is preferred at RoR 40% over X at 50% Increment earns at 30% Rejection $20 rd

  3. Benefit-Cost Graph • MARR = 6% A B C 20-yearsFirst cost $2000 $4000 $5000UAB 410 639 700PWBenefits 4703 7329 8029 8029 C 7329 B i=6% NPW=0 4703 A 2000 4000 5000 rd

  4. Incremental Analysis • A B C MARR = 10% • First cost $18K $25K $15K Life 25 yearsUAB 1055 2125 1020 Salvage ~ 0IRR (%) 7 9 8 • IRRA-C = (UIRR 3000 35 25 0) -7.86% C > A • IRRB-C = (UIRR 10E3 1105 25 0) 10.04% B > C rd

  5. Incremental Analysis MARR = 8% A B C First Cost 1000 2000 3000UA Benefits 150 150 0 Salvage value 1000 2700 5600Life 5 6 7IRR 15% 11.81% 9.33% Take in order of increasing first cost: A > 15% RoRB-A(IRR ‘(-1000 0 0 0 0 –1000 2850)) 9.8% => B > A RoRC-B(IRR –1000 –150 -150 -150 –150 -150 -2850 5600)) returns 6.75% => B is best. rd

  6. Incremental RoR Analysis • A B C D 5-year life • First cost 100 130 200 330Annual income 100 90.78 160 164.55Annual cost 73.62 52.00 112.52 73.00 • IRR (%) 10 15 6 12 • B – A ~ (UIRR 30 12.4 5 0) 30.35% • C – B ~ (UIRR 70 8.7 5 0) - 14% • D – B ~ (UIRR 200 52.77 5 0)  10% • If MARR > 15% Do Nothing 15% > MARR > 0% Select B rd

  7. Problem 8-27 • A  (-1300 100 130 160 190 220 250 280 310 340 370) • B  (-1300 10 60 110 160 210 260 310 360 410 460) • B – A  (mapcar #'- b a))  (0 -90 -70 -50 -30 -10 10 30 50 70 90) • (sum *)  0 => 0% => a is better than b for any positive rate • Check I: (cum+ '(0 -90 -70 -50 -30 -10 10 30 50 70 90)) • (0 -90 -160 -210 -240 -250 -240 -210 -160 -90 0)=> no positive rate of return for the B – A increment exists • Check II: (list-pgf a 8) --> 150.31; (list-pgf b 8) --> 65.94 • (mapcar #'- a c)  A – C  (0 -160 -130 -100 -70 -40 -10 20 50 80 110) • (cum-add *)  (0 -160 -290 -390 -460 -500 -510 -490 -440 -360 -250) There is no positive rate of return for which A is better than C => Reject A • Check: (list-pgf c 8)  $444.62 > $ 150.31 • (mapcar #' - c d)  (0 -190 -140 -90 -40 10 60 110 160 210 260) • (cum-add *)  (0 -190 -330 -420 -460 -450 -390 -280 -120 90 350) => UIRR(IRR '(-190 -140 -90 -40 10 60 110 160 210 260) 0.95)  8.97% > 8% • => C is better than D and is best. Check: (list-pgf d 8) --> 420.69 rd

  8. Problem 8-2 XYX - YFirst Cost -100 -50 -50UAB 31.5 16.5 15Life (years) 4 4 4 RoR 9.93% 12.11% 7.71% Which is better if a) MARR = 6%? Xb) MARR = 9% Yc) MARR = 10% Yd) MARR = 14% Do Nothing rd

  9. Problem 8-3 A B B-AFirst Cost -100 -150 -50 UAB 30 43 13Life (years) 5 5 IRR (%) 15.24 13.34 9.43 (UIRR 100 30 5 0)  15.24% for A(UIRR 150 43 5 0)  13.34% for B(UIRR 50 13 5 0)  9.43% for B – AWhich is better if a) MARR = 6%? Bb) MARR = 8%? B c) MARR = 10% A d) MARR = 16% Do Nothing rd

  10. Example 8-6 • MARR = 6% A B C D E • First Cost 4K 2K 6K 1K 9KUAB 639 410 761 117 785Life 20 20 20 20 20 • (UIRR 1 0.117 20) 9.84 > 6% D is better than MARR • (UIRR 1 0.293 20)  29.12% => B > D • (UIRR 2 0.229 20)  9.62% => A > B • (UIRR 2 0.122 20)  1.97% => A > C • (UIRR 5 0.146 20)  -4.65% => A > E Choose A rd

  11. Problem 8-8 (UIRR 200 70 5 50) 26.05% => Select Neutralization rd

  12. Problem 8-? • MARR = 6% A B C 20-year analysis • First cost $10K $15K $20KUAB 1625 1625 1890Life 10 20 20 • (UIRR 10e3 1625 10) 9.96% A • (UIRR 15e3 1625 20) 8.84% B • (UIRR 20e3 1890 20) 7.01% C • (UIRR 5e3 0 10 10e3)  7.18% B – A 10-year(UIRR 5e3 265 20 0) 0.56%C – B 20-year rd

  13. Problem 8-14 • MARR = 8% A B C no replacementFirst cost 1000 2000 3000UAB 150 150 0Salvage 1000 2700 5600Life (yrs) 5 6 7 RoR 15% 11.83% 13.3%(IRR '(-1000 0 0 0 0 -1000 2850))  9.8% B > A (IRR '(-1000 -150 -150 -150 -150 -150 -2850 5600)) • 6.75% for C – B < 8% => Reject C; • Conclude B is best. rd

  14. Problem 8-15 Year X Y Y- X0 -10 -20 -101 15 28 13IRR (%) 50 40 30 Over what range of MARR is Y preferred over X? Y is better for MARR < 30%X is better for 30% < MARR < 50%Do Nothing for MARR > 50%. rd

  15. Problem 8-19 • Replace B and C when needed. Use MARR = 8% A B C • First cost $100 $150 $200UAB 10 17.62 55.48Life (years) ∞ 20 5 • Capitalized Costs Analysis NPWA = 10/0.08 – 100 = $25 • NAWB = 17.62 -150(A/P, 8%, 20) = $2.34 perpetuity NPWB = 2.34/0.08 = $29.28 NAWC = 55.48 -200(A/P, 8%, 5) = $5.39 or perpetuity NPWC = 5.39/0.08 = $67.36 *** C rd

  16. Problem 8-21 MARR = 12% • n 0 1 2 3 4 A $-20K 10K 5K 10K 6K B -20K 10K 10K 10K 0C -20K 5K 5K 5K 15K • (IRR '(-20 10 5 10 6)) 21.35% A • (IRR '(-20 10 10 10 0)) 23.38% B • (IRR '(-20 5 5 5 15)) 14.98% C • (IRR '(-5 0 6))  9.54% A – B Reject A • (IRR '(-5 -5 -5 15))  0.0% C – B Reject CChoose B rd

  17. Problem 8-25 • A B C D First Cost 100K 130K 200K 330KUAB 26.38K 38.78K 47.48K 91.55KLife 5 5 5 5 • RoR 10% 15% 6% 12% • At a MARR of 8%, which to choose? Reject C & Do Nothing • B dominates A as its return is greater for a larger investment. • D – B => (UIRR 200 52.55 5)  9.84% => D is best. • RoRD-B= 9.84% > 8% MARR => Select D. rd

  18. Problem 8-32 • Option A $30,976 tax free retirement annuity • Option B $359.60/month for test of life or 20 years • Option C $513.80/month for next 10 years What to d • 12 * 359.6 = $4315.20, 12 * 513.80 = 6165.60 • B – A (UIRR 30976 4315.20 20)  12.64% • C – A (UIRR 30976 6165.60 10)  14.97% • B – C (IRR '(-1850.4 -1850.4 -1850.4 -1850.4 -1850.4 -1850.4 -1850.4 -1850.4 -1850.4 -1850.4 4315.2 4315.2 4315.2 4315.2 4315.2 4315.2 4315.2 4315.2 4315.2 4315.2) 0.8)  8.836% • MARR < 8.836% Choose B8.836 < MARR < 14.9% Choose C at 9%14.9% < MARR < i% Choose A 30976(A/P, i%, 20) rd

  19. Problem 8-27 • MARR = 6% A B C D First Cost, $ 2K 5K 4K 3KAnn-Benefits 800 500 400 1300 Salvage 2K 1.5K 1.4K 3KLife 5 6 7 4 RoR 40% -2.4% 1% 43.3% Reject B & C • (UIRR 2 0.8 5 2)  40%; (UIRR 5 0.5 1.5 6 1.5)  -2.38% • (UIRR 4 0.4 7 1.4)  0.98%; (UIRR 3 1.3 4 3)  43.33% • (IRR '(-1000 500 500 500 3500 -2800)) 51.9% D - A • (cum-add '(-1000 500 500 500 3500 -2800))  • (-1000 -500 0 500 4000 1200) => unique positive • RoR • 2800(P/F, 6%, 1) = $2641.51 (IRR '(-1000 500 500 500 858.49 0))  41.1% rd

  20. Problem 8-29 • MARR = 8% Atlas ZippyFirst cost $6700 $16,900AO&M cost 1500 1200UAB 4000 4500Salvage 1000 3500Life (years) 3 6 • (UIRR 6700 2500 3 1000) 12.134% for Atlas(UIRR 16900 3300 6 3500)  8.983% for Zippy • Atlas cf: -6700 2500 2500 -3200 2500 2500 3500Zippy cf: -16900 3300 3300 3300 3300 3300 6800(IRR '(-10200 800 800 6500 800 800 3300))  6.802% Select Atlas rd

  21. Problem 8-33 • A B B-A C First Cost $100K $300K 200K $500K Annual Benefit 30K 66K 33K 80KProfit Rate (%) 30% 22% 18% 16% • MARR = 20% thus eliminating C. • B – A cash flow is -200K 36K returns a profit rate of 18%. • Thus best to choose A as the $200K difference can be making MARR money at 20%. rd

  22. Problem 8-34 • A B C D $30K Budget • First cost $10K $18K $25K $30K MARR = 15%AB 4K 6K 7.5K 9K • AOC 2K 3K 3K 4K • A earns 2K + 0.15 * 20K = $5K / year • B earns 3K + 0.15 * 12K = $4800 / year • C earns 4.5K + 0.15 * 5K = $5200 / year *** • D earns 5K + 0.15 * 0 = $5K • Choose C rd

  23. Problem 8-35 • 24-month lease costing $267/month for $9400 car which can be bought for 24 equal monthly payments at 12% APR. Assume car salvage value is $4700. Lease or buy? • 9400(A/P, 1%, 24) = $442.49 • 4700 = (442.49 – 267)(F/A, i%, 24) • (F/A, i%, 24) = 26.78215 < 1% 0.94% => 11.28% APR • => Lease at rate above 11.28%. rd

  24. ME; MARR = 9%; Life 10 years • A B C D E • First cost $4K $5K $2K $3K $6KUAB $797 $885 $259 $447 $1063 • (UIRR 2000 259 10 0)  5% Reject • (UIRR 3000 447 10 0)  8% Reject D • (UIRR 4000 797 10 0)  15% Accept A • (UIRR 1000 88 10 0) -% => Reject B • 5. (UIRR 2K 266 10 0)  5.52% => Reject C; A is best. rd

More Related