1 / 34

DANNY PERICH C .

POLIEDROS Etimológicamente, la palabra poliedro (Π oλυεδρos ) deriva de los términos griegos Π oλυs (mucho) y εδρα (plano). DANNY PERICH C. “ No entre aquí quien no sepa geometría ”.

kairos
Download Presentation

DANNY PERICH C .

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. POLIEDROSEtimológicamente, la palabra poliedro (Πoλυεδρos) deriva de los términos griegosΠoλυs (mucho) y εδρα (plano). DANNY PERICH C.

  2. “No entre aquí quien no sepa geometría” • Esta frase se podía leer encima de la puerta de entrada a la Academia de Platón (siglo IV A.C.) donde se reunían a discutir problemas de filosofía, lógica, política, arte, etc.

  3. CUERPOS SÓLIDOS • Un cuerpo sólido es todo lo que ocupa lugar en el espacio. • Los cuerpos geométricos pueden ser de dos clases: o formados por caras planas (poliedros), o teniendo alguna o todas sus caras curvas (cuerpos redondos).

  4. Actividad a. ¿Qué características comunes ves a todos ellos? b. Dibuja otros tres cuerpos con las mismas características. c. Señala 3 objetos reales que sean poliedros.

  5. DEFINICIÓN • Estos cuerpos se llaman poliedros y podemos decir de forma simplificada que son sólidos limitados por caras en forma de polígonos.

  6. Ángulos diedros Dos planos que se cortan, dividen el espacio en cuatro regiones. Cada una de ellas se llama ángulo diedro o simplemente diedro. Las caras del diedro son los semiplanos que lo determinan y la recta común a las dos caras se llama arista.

  7. Si son tres planos los que se cortan, se le llama triedro, si cuatro, tetraedro, si cinco, pentaedro, etc. • Al punto común se le llama vértice.

  8. Actividad • Observa los siguientes poliedros. • Si los sitúas en un plano, observa que hay dos que no se pueden apoyar sobre todas sus caras. ¿Cuáles son?

  9. DEFINICIÓN • A los poliedros que tienen alguna cara sobre la que no se pueden apoyar, se les llama cóncavosy a los demás convexos. Nosotros vamos a trabajar siempre, salvo que se indique lo contrario, con poliedros convexos.

  10. Actividad • En la figura siguiente tienes pintado un poliedro. En él se te indican algunos elementos característicos. a. ¿Cómo definirías cada uno de estos elementos? b. ¿Cuántas caras, vértices y aristas tiene este poliedro? c. ¿Cuántas caras se habrán de juntar en un vértice como mínimo? Al número de caras que concurren en un mismo vértice se le llama orden del vértice.

  11. FÓRMULA DE EULER (1750) • En los poliedros de la figura, cuenta el número de caras, vértices y aristas y escríbelos en la tabla. ¿Encuentras alguna relación entre C, V y A?

  12. CONCLUSIÓN • En todos los poliedros convexos se verifica siempre que el número de caras más el número de vértices es igual al número de aristas más dos: C + V = A + 2

  13. Hay otros elementos en los poliedros que debes conocer: ¿Cómo definirías la diagonal de un poliedro? ¿Y el plano diagonal? ¿Cuál es el número de diagonales y de planos diagonales del poliedro anterior?

  14. Explica razonadamente cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas 1. El número de aristas de un poliedro que concurren en un vértice es, como mínimo, 4. 2. Las caras de un poliedro son todas iguales. 3. Hay poliedros con tres caras. 4. En cada vértice de un poliedro concurren siempre el mismo número de aristas. 5. Las caras de un poliedro han de ser forzosamente polígonos. 6. Todos los poliedros de cinco caras tienen 8 aristas y 5 vértices. 7. El número mínimo de caras que concurren en un vértice es 3. 8. El cilindro es un poliedro.

  15. POLIEDROS REGULARES • Se les conoce con el nombre de sólidos platónicos en honor a Platón (siglo IV a. de C.), pero lo cierto es que no se sabe en qué época llegaron a conocerse. Algunos investigadores asignan el cubo, tetraedro y dodecaedro a Pitágoras y el octaedro e icosaedro a Teeteto (415-369 a. de C.)

  16. DEFINICIÓN • Un poliedro es regular si todas sus caras son regulares e iguales y todos sus vértices son del mismo orden.

  17. TETRAEDRO REGULAR • Formado por tres triángulos equiláteros. Es el que tiene menor volumen de los cinco en comparación con su superficie. Representa el fuego. Está formado por 4 caras, 6 aristas y 4 vértices. FUEGO

  18. OCTAEDRO REGULAR • Formado por ocho triángulos equiláteros. Gira libremente cuando se sujeta por vértices opuestos. Por ello, representa al aire en movimiento. Está formado por 8 caras, 12 aristas y 6 vértices. AIRE

  19. ICOSAEDRO REGULAR • Formado por veinte triángulos equiláteros. Es el tiene mayor volumen en relación con su superficie y representa al agua. Tiene 20 caras, 30 aristas y 12 vértices. AGUA

  20. HEXAEDRO REGULAR O CUBO • Formado por seis cuadrados. Permanece estable sobre su base. Por eso representa la tierra. Está formado por 6 caras, 12 aristas y 8 vértices. TIERRA

  21. DODECAEDRO REGULAR • Formado por doce pentágonos regulares. Corresponde al Universo, pues sus doce caras pueden albergar los doce signos del Zodiaco. Tiene 12 caras, 30 aristas y 20 vértices. EL UNIVERSO

  22. A finales del siglo XVI, Kepler imaginó una relación entre los cinco poliedros regulares y las órbitas de los planetas del sistema solar entonces conocidos (Mercurio, Venus, Marte, Júpiter y Saturno). Según él cada planeta se movía en una esfera separada de la contigua por un sólido platónico.

  23. DESARROLLO DE POLIEDROS • Si en un poliedro cortamos por un número suficiente de aristas de forma que quede una sola pieza y la extendemos en el plano, obtenemos un desarrollo del poliedro.

  24. Un desarrollo de cada sólido platónico Dibújalos en una cartulina, recórtalos y constrúyelos.

  25. Poliedros en la vida cotidiana • Ornamentaciones, en farolas, lámparas, etc. • Los balones de fútbol han estado hechos siempre con 12 pentágonos y 20 hexágonos (icosaedro truncado), aunque hoy día se han cambiado por otra forma poliédrica más redondeada (el pequeño rombicosidodecaedro) que tiene 20 triángulos, 30 cuadrados y 12 pentágonos En sus formas naturales, muchos minerales cristalizan formando poliedros característicos.

  26. En 1.996 se concedió el premio Nobel de Química a tres investigadores por el descubrimiento del fullereno cuya forma es un icosaedro truncado. • Los panales de abejas tienen forma de prismas hexagonales • El virus de la poliomelitis y de la verruga tienen forma de Icosaedro • Las células del tejido epitelial tienen forma de Cubos y Prismas

  27. En pintura, Salvador Dalí, utiliza el dodecaedro en un óleo para enmarcar su escena sobre la última cena (con sus 12 Apóstoles). También lo utiliza en su obra Crucifixión (la cruz se compone de 8 hexaedros adosados)

  28. PRISMAS • Un prisma es un poliedro limitado por dos caras iguales y paralelas (bases) y tantos paralelogramos (caras laterales) como lados tienen las bases

  29. 1. ¿Qué objetos reales te sugieren la idea de prisma? 2. ¿Cómo definirías cada uno de los elementos especificados en la figura? 3. Si los polígonos de la base son regulares, el prisma se llama regular. 4. ¿Incluirías los prismas regulares entre los poliedros regulares?

  30. Un prisma se llama recto cuando sus aristas laterales son perpendiculares a las bases y oblicuo en caso contrario. • La altura de un prisma será el segmento de perpendicular a las bases comprendido entre estas. • Si la base del prisma es un triángulo, el prisma se llamará triangular; si es un cuadrado, se llamará cuadrangular, etc.

  31. Hay unos prismas especialmente interesantes dentro de los prismas cuadrangulares. Estos son los paralelepípedos llamados así porque los cuadriláteros de las bases son paralelogramos. • Si el paralelepípedo es recto y los paralelogramos de las bases son rectángulos, éste recibe el nombre de paralelepípedo rectángulo u ortoedro.

  32. PIRÁMIDES • Cuando cortamos un ángulo poliedro por un plano, se obtiene un cuerpo geométrico llamado pirámide. En la figura se indican los elementos más notables de una pirámide. ¿Es una pirámide un poliedro regular? ¿Cómo definirías cada uno de ellos?

  33. Las pirámides se puede clasificar de forma análoga a los prismas. Así, hay pirámides rectas y oblicuas, según que el centro del polígono de la base coincida o no con el pie de la altura de la pirámide, y regulares e irregulares, según que el polígono de la base sea o no regular. • Así mismo, según el número de lados del polígono de la base, la pirámide será triangular, cuadrangular, pentagonal, etc.

  34. TRONCO DE PIRÁMIDE • Si cortamos una pirámide por un plano, obtenemos un tronco de pirámide, que será recto u oblicuo, según que el plano sea o no paralelo a la base. Fíjate en que las caras laterales de un tronco de pirámide son trapecios y cuando éste es regular, entonces los trapecios son isósceles iguales y su altura coincide con la apotema del tronco de pirámide. Por otra parte, las bases son polígonos semejantes. FUENTE: http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/materiales/4eso/geometria/poliedros/poliedros.htm

More Related