1 / 56

Polarisation at Linear Colliders

Polarisation at Linear Colliders. Achim Stahl Zeuthen 15.Oct.03. Polarisation at Linear Colliders. Contents. Physics Motivation Polarisation Measurement Creation of Polarised Beams. Single Particle: Helicity. Particle Bunch: Polarisation. Definitions. 4 Beam Configurations.

kaiya
Download Presentation

Polarisation at Linear Colliders

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03

  2. Polarisation at Linear Colliders Contents • Physics Motivation • Polarisation Measurement • Creation of Polarised Beams

  3. Single Particle: Helicity Particle Bunch: Polarisation Definitions

  4. 4 Beam Configurations • Unpolarised Beams • Long. Polarisation: Electrons only • Long. Polarisation: Both Beams • Transverse Polarisation

  5. Pol: -90% / 60% J = 0 6 % J = 1 4 % J = 0 36 % J = 1 54 % QM States:

  6. Physics Motivation Understanding Matter, Energy, Space and Time http://blueox.uoregon.edu/~lc/wwwstudy/

  7. Electron Polarisation TDR assumes polarised electron beam (~80 %) Higgs-W coupling from: For mH = 120 GeV:

  8. ~ ~ Positron Polarisation I: known to be discovered ~ ~ but which is which ?

  9. ~ e+ e+ and , Z or ~ ~ ~ ~ e+R e+R e-R e-R ~ e- e- ~ ~ ~ e+L e+L e+L ~ ν ~ ~ ~ e-L e-L e-L Positron Polarisation I: J = 1 e+L J = 0,1 e-L

  10. Positron Polarisation II: Giga – Z option needs positron polarisation 109 Z0 in 100 days sin2θeff from ALR Δsin2θeff: ≈ 10-5 ΔALR: 8 10-5

  11. 2 (1 – 4 sin2θeff) L - R ALR = = L + R 1 + (1 – 4 sin2θeff)2 Positron Polarisation II: needs ΔP/P ≈ 10-4 Positron Elektron 4 Measurements 4 Unknown L, R, P+, P-

  12. 2 (1 – 4 sin2θeff) L - R ALR = = L + R 1 + (1 – 4 sin2θeff)2 Positron Polarisation II: Klaus Mönig

  13. Positron Polarisation III: gravitons into extra dimensions e+e- G  main background e+e- νν enhance signal suppress background

  14. ~ ~ e+e- Χ0Χ0 Positron Polarisation III: enhance signal suppress background

  15. P+ - P- Peff = 1 - P+ P- Positron Polarisation IV: for any s-channel J=1 process effective polarisation  = (1 – P+P-) 0 ( 1 + Peff ALR)

  16. Positron Polarisation: effective polarisation in contact interactions (by Sabine Riemann)

  17. c,b e+ G e- c,b Transverse Polarisation: transverse asymmetry indicate Spin-2 exchange trans. polarisation asymmetries need both beams polarised

  18. W e W e , Z ν TGC e e W W Transverse Polarisation: Triple Gauge Couplings trans. asym. dominated by WLWL trans. polarisation asymmetries need both beams polarised Jegerlehner / Fleischer / Kołodziej

  19. Precision Polarimetry

  20. Phys. Processes for Polarimetry: e – Nucleon spin-orbital mom. coupling measures trans. pol. energy ≤ 1 MeV Mott Scattering: e – e polarised iron foils destructive measurement cross check @ LC Møller Scattering: e –  polarised laser target non-invasive main polarimeter @ LC Compton Scattering:

  21. Møller Polarimeter: JLab Polarimeter

  22. N- - N+ N- + N+ Compton Polarimeter: pol. Laser electron beam

  23. Compton Polarimeter:

  24. Compton Polarimeter: main beam • large -background near beam • Čerenkov detectors only sensitive to electrons • light guides allow PMT behind schielding

  25. Polarimeter: before the IP Polarimeter: at the IP Polarimeter: before the IP beam depolarises during collision by ≈ 1 % Optimal Position ? Polarimeter: electron source Polarimeter: positron source

  26. Compton Polarimeter: precision: ΔP/P

  27. Polarised e+e- Sources

  28. Static e- Source: Photoeffect on GaAs crystal Acceleration of electrons by static electrical field

  29. Polarised e- source: simple model + spin-orbital momentum coupling + anisotropy of crystal

  30. Polarised e- source: Negative Electron Affinity surface electrons drift to surface L < 100 nm to avoid depolarisation

  31. But Problem: charge saturation 100 nm GaAs Polarised e- source: SLC source: <P> = 77 % (97/98)

  32. Polarised e- source: New Development: Strained Super Lattice

  33. Polarised e- source: New Development: Strained Super Lattice • charge limit overcome

  34. Polarised e- source: New Development: Strained Super Lattice • charge limit overcome • high polarisation SLC: <P> = 74 % E158: <P> = 86 % LC spec: <P> = 80 % Goal: <P> = 90 % but ... GaAs crystals are very sensitive  need UHV (< 10-11 Torr)

  35. Polarised e- source: static source: medium emittance / excellent vacuum RF-gun: excellent emittance / good vacuum GaAs crystals are very sensitive  need UHV (< 10-11 Torr) LC baseline design: static source + damping ring • New developments: • improve emittance of static source: SLAC / KEK • improve vacuum of RF-guns: FermiLab • more robust crystal (chalcopyrite): PITZ II (?)

  36. Conventional e+ source: NLC baseline design high power needs 3 targets +1 spare

  37. Polarised e+ source: TESLA baseline design: Undulator based source Idea by Balakin and Michailichenko (1979)

  38. Proof-of-principle Test-experiment at the SLC FFTB beam line joint experiment between JLC / NLC / TESLA

  39. Ø 0.89 mm E166 prototype prototype of TESLA undulator The Helical Undulator rotating magnetic field creates circularly polarised photons

  40. The Helical Undulator rotating magnetic field creates circularly polarised photons similar spectrum much smaller power E166 LC

  41. E166: -spec. x -pol. x pair x e+-pol. Positron Production 100 % polarised photons pair production on 0.5 X0 Ti-W alloy target polarised photons  polarised positrons x capture prob. (LC only)

  42. Experimental Setup

  43. Positron Polarimeter

  44. Positron Spectrometer select positron energy for polarisation analysis includes “capture prob.“

  45. Transmission Polarimeter Positron beam not collimated  conventional polarimeter methods fail Solution: transmission polarimeter 1st step: convert e+  (bremsstrahlung) 2nd step: measure -Pol in transmission

  46. Conversion e+ 

  47. Transmission Polarimeter • Positron beam • not collimated • transmission polarimeter

  48. Transmission Polarimeter

  49. Photon Calorimeter array of 16 CsI crystals crystals Dresden + SLAC photodiodes Dresden preamp SLAC receiver U Mass ADCs SLAC (SLD) mechanics HU

  50. Experimental Setup

More Related