1 / 17

Thermodynamics of the Internal Combustion Engine

Thermodynamics of the Internal Combustion Engine. AGUS HARYANTO. PERSAMAAN2 TERMODINAMIKA. Hukum Boyle untuk gas ideal: P 1 V 1 = P 2 V 2 = P n V n = konstan Hukum Charles: Pada P konstan , V 1 /V 2 = T 1 /T 2 Pada V konstan , P 1 /P 2 = T 1 /T 2 Persamaan gas ideal

kalani
Download Presentation

Thermodynamics of the Internal Combustion Engine

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Thermodynamics of the Internal Combustion Engine AGUS HARYANTO

  2. PERSAMAAN2 TERMODINAMIKA • Hukum Boyle untuk gas ideal: P1V1 = P2V2 = PnVn = konstan • Hukum Charles: Pada P konstan, V1/V2 = T1/T2 Pada V konstan, P1/P2 = T1/T2 • Persamaan gas ideal P1V1/T1 = P2V2/T2 = … PV/T = R PV = RT PV = mRT

  3. PERNYATAAN Kelvin-Plank (1850) For heat engines: It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work.

  4. BOTTOM LINE • Tidak ada mesin siklik yang memiliki efisiensi 100%

  5. Panas spesifik, entropi, perubahan energi dakhil • Panas spesifik Q = mCp(T2 – T1) • Entropi T dS = dQ • Perubahan energi: Q = U2 – U1 + W

  6. Diagram P-v dan T-s

  7. Efisiensi Termal

  8. cold-air-standard assumptions Air-standard assumptions: • The working fluid is air, which circulates in a closed loop and behaves as an ideal gas. • All the processes are internally reversible. • The combustion process is replaced by a heat-addition from an external source • The exhaust process is replaced by a heat-rejection and restores the fluid to initial state. • Air has constant specific heats at room temperature 25°C.  cold-air-standard assumptions.

  9. Siklus Motor Otto (bensin) Ideal The ideal Otto cycle consists of four internally reversible processes: • 1-2 Isentropic compression • 2-3 Constant-volume heat addition (Combustion) • 3-4 Isentropic expansion (Langkah usaha) • 4-1 Constant-volume heat rejection (langkah buang)

  10. ENERGY BALANCE SIKLUS OTTO • (qin – qout) + (win – wout) = u • Qin = u3 – u2 = Cv(T3 – T2) • Qout = u4 – u1 = Cv(T4 – T1)

  11. ENERGY BALANCE SIKLUS OTTO • Mean effective pressure (MEP): if it acted on the piston during the entire power stroke, would produce the same amount of net work as that produced during the actual cycle • Wnet = MEP * Vol. displcm

  12. ENERGY BALANCE SIKLUS OTTO • r = compression ratio • k = heat specific ratio = Cp/Cv

  13. Note: Compression ratio yang tinggi akan berakibat pada suhu kompresi yang tinggi juga. Pada motor bensin, jika suhu ini mengakibatkan AUTOIGNITION dan menghasilkan noise yang disebut KNOCKING. Efisiensi termal motor bensin aktual 25 - 30 %.

  14. ENERGY BALANCE SIKLUS DIESEL • (qin – qout) + (wb) = u • Qin = h3 – h2 = Cp(T3 – T2) • Qout = u4 – u1 = Cv(T4 – T1)

  15. ENERGY BALANCE SIKLUS DIESEL

  16. Note: Eff. Thermal Motor bensin > diesel the same compression ratio. Efisiensi termal motor diesel aktual 35- 40 %.

More Related