1 / 24

Nonperturbative Heavy-Quark Interactions in the QGP

Nonperturbative Heavy-Quark Interactions in the QGP. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: F. Riek (Texas A&M), H. van Hees (Giessen), V. Greco (Catania), M. Mannarelli (Barcelona). 1.) Introduction.

kalea
Download Presentation

Nonperturbative Heavy-Quark Interactions in the QGP

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nonperturbative Heavy-Quark Interactions in the QGP Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: F. Riek (Texas A&M), H. van Hees (Giessen), V. Greco (Catania), M. Mannarelli (Barcelona)

  2. 1.) Introduction • “Large” scale mQ >> LQCD , T • Low-energy/-momentum interactions: • - heavy-quark diffusion ↔ elastic scattering, Fokker-Planck • - quarkonia ↔ potential QCD • → uniform framework • as expansion inadequate • → resummations, bound + scattering states • theo. / pheno. constraints essential • (baselines prior to applications in heavy-ion collisions)

  3. Outline 1.) Introduction 2.) T-Matrix Approach with Heavy Quarks  Potential Approach + Lippmann Schwinger Eq.  Vacuum and pQCD Limits  In-Medium Potentials  Q-Q and Q-q Scattering in Medium 3.) Heavy-Quark Diffusion in QGP  Fokker-Planck Equation  Transport coefficients  Electron Spectra at RHIC 4.) Conclusions

  4. 2.) T-Matrix Approach with Heavy Quarks • HQ potential concept well established • in vacuum (EFT, lattice) • 3-D reduction of Bethe-Salpeter Eq. Lippmann-Schwinger Equation [Mannarelli+RR ’05, Cabrera+RR ‘06] In-Medium Q-QT-Matrix: - - - Q-Q propagator: - bound + scattering states • 2-body potential VL in medium?Color-Magnetic Interaction?

  5. 2.2 Color Magnetic Interaction and Constraints • Color-Magnetic “Breit” Interaction • VQ1Q2(r) → VQ1Q2(r) ( 1 – v1· v2 ) [G.E. Brown ’52, Brown et al ‘04] - Vacuum “Spectroscopy” Perturbative Q-q Scattering mc0 =1.4 GeV - [van Hees et al ‘09] [Riek et al ‘09] - • Born approx. TQq = VQq • recovers pQCD within ~20% • Q-Q and Q-q states ~ o.k. • spin-interactionsO(1/mQ)

  6. 2.3 Lattice QCD Free Energy + In-Medium Potential • F1(r,T) = U1(r,T) – T S1(r,T) • V1(r,T) ≡ X1(r,T) - X1(r=∞,T) • (X1∞ / 2 : in-medium quark-mass?!) • (a) X1=F1 : trelax << tint • (b) X1=U1 : trelax >> tint • (c) Landau-Zener “mixing” • X1 = P U1 + (1-P) F1 • P = exp[- 2p |H12|2 / vrel d/dr (F1-U1)] • |H12| ~ 1/trelax [Shuryak ‘08, Riek et al ‘09] [Kaczmarek +Zantow ’05]

  7. 2.4 Charmonium T-Matrix in QGP • ground state bound to ~ 2 Tc for V = U, VLZ • ~ 1.2Tc for V = F

  8. 2.5 Heavy-Light Quark Scattering in QGP • threshold S-wave resonances (meson+diquark) close to TC

  9. 3.) Heavy-Quark Transport in the QGP • Brownian • Motion: Fokker Planck Eq. Q [Svetitsky ’88,…] thermalization rate diffusion coefficient • Transition rate: wQ(p,k) ~ ∑ q,g ∫ fq,g(E;T) |TQq|2 • Heavy-quark selfenergy: Q

  10. 3.2 Charm-Quark Selfenergy + Drag Selfenergy Thermalization Rate • charm quark widths Gc = -2 ImSc ~ 250 MeV close to TC • friction coefficients increase(!) with decreasing T→TC!

  11. 3.3 Comparison of Drag Coefficients(Thermal Relaxation Rate) [Gubser ’06] [Peshier ‘06; Gossiaux+Aichelin ’08] g [1/fm] [van Hees+RR ’04] [van Hees,Mannarelli, Greco+RR ’07] T [GeV] • T-matrix rate ~ constant (melting resonances) • trelax = 1/g ~ 7 fm/c

  12. 3.4 T-Matrix Approach vs. e± Spectra at RHIC [van Hees,Mannarelli,Greco+RR ’07] • max. interaction at~Tc • ↔ hadronic correlations • ↔ quark coalescence Spatial Diffusion Coeff.

  13. 4.) Summary and Conclusions • In-MediumQ-q+Q-QT-Matrix • → heavy-quark diffusion and quarkonia in QGP on same footing • Constraints essential: • - lQCD based potential (F-U relaxation), Eucl. correlators • - vacuum, pQCD • “hadronic” correlations close to Tc ↔ quark coalescence • ↔ max. coupling strength at ~Tc ↔ min. h/s !? • Radiative diffusion? Light-quark sector? Non-pert. gluons? … • RHIC non-photonic e± Ds (2pT) ≈ 5 • - v2 - RAA correlation essential • - scrutinize medium evolution, Fokker-Planck, d-Au …

  14. 3.1 HQ Langevin Simulations: Hydro vs. Fireball Elastic pQCD + Hydrodynamics [Moore+Teaney ’05] • b=6.5 fm • Tc=165 MeV • t ≈ 9 fm/c Ds (2pT) ≈ 6  v2max ~ 5-6% RAA~ 0.3 Resonance Model + Expanding Fireball • Tc=180 MeV • bulk-v2 ~5.5% • tQGP ≈ 5 fm/c [van Hees,Greco +RR ’05]

  15. 2.3 AdS/CFT-QCD Correspondence 3-momentum independent [Herzog et al, Gubser ‘06] • match energy density • (d.o.f = 120 vs. ~40) • and coupling constant • (heavy-quark potential) • to QCD Lat-QCD TQCD ~ 250 MeV  ≈ (4-2 fm/c)-1 at T=180-250 MeV [Gubser ‘07]

  16. 3.) Phenomenology at RHIC • Medium evolution • - hydrodynamics or parameterizations thereof • - realistic bulk-v2(~5-6%) • - stop evolution after QGP; hadronic phase? • Hadronization • - fragmentation: c → D + X • - coalescence: c + q → D, adds momentum and v2 • - chemistry (e.g. Lc enhancement) • Semileptonic electron decays • - approx. conserve v2 and RAA of parent meson • - charm/bottom composition in p-p [Hirano et al ’06] [Martinez et al, Sorensen et al ‘07] [Greco et al, Dong et al ‘04]

  17. 3.3 Heavy-Quark Spectra at RHIC • relativistic Langevin simulation in thermal fireball background Nuclear Modification Factor Elliptic Flow pT [GeV] pT [GeV] • T-matrix approach ≈ effective resonance model • other mechanisms: radiative (2↔3), … [Wiedemann et al.’05,Wicks et al.’06, Vitev et al.’06, Ko et al.’06]

  18. 4.) Maximal “Interaction Strength” in the sQGP • potential-based description ↔ strongest interactions close to Tc • - consistent with minimum in h/s at ~Tc • - strong hadronic correlations at Tc ↔ quark coalescence • semi-quantitative estimate for diffusion constant: weak coupl. h/s ≈ 4/15 n <p> ltr=1/5 T Ds strong coupl. h/s≈ 1/4p Ds(2pT) = 1/2 T Ds  h/s≈ (2-4)/4p close toTc [Lacey et al. ’06]

  19. 3.2.2 The first 5 fm/c for Charm-Quark v2 + RAA Inclusive v2 Time Evolution • RAA built up earlier than v2

  20. 2.2.2 “Lattice QCD-based” Potentials • accurate lattice “data” for free energy:F1(r,T) = U1(r,T) – T S1(r,T) • V1(r,T) ≡ U1(r,T) - U1(r=∞,T) • (much) smaller binding for • V1=F1, V1 = (1-a) U1 + a F1 [Cabrera+RR ’06; Petreczky+Petrov’04] [Wong ’05; Kaczmarek et al ‘03]

  21. Fragmentation only • large suppression from resonances, elliptic flow underpredicted (?) • bottom sets in at pT~2.5GeV 2.4 Single-e± at RHIC: Effect of Resonances • hadronize output from Langevin HQs (d-fct. fragmentation, coalescence) • semileptonic decays: D, B → e+n+X

  22. 2.4.2 Single-e± at RHIC: Resonances + Q-q Coalescence fqfrom p, K [Greco et al ’03] Elliptic Flow Nuclear Modification Factor • less suppression and morev2 • anti-correlation RAA ↔ v2 from coalescence (both up) • radiative E-loss at high pT?!

  23. 2.1.3 Thermal Relaxation of Heavy Quarks in QGP Charm: pQCD vs. Resonances Charm vs. Bottom pQCD “D” • tctherm ≈ tQGP ≈ 3-5 fm/c • bottom does not thermalize • factor ~3 faster with • resonance interactions!

  24. 3.2 Model Predictions vs. PHENIX Data Single-e±Spectra [PHENIX ’06] • pQCD radiative E-loss with • upscaled transport coeff. • Langevin with elastic pQCD + • resonances + coalescence • Langevin with upscaled • pQCD elastic • coalescence increases • bothRAA and v2

More Related