320 likes | 642 Views
Influence of peripheral field on structure of nonlinear focus arising at propagation of a wave beam in cubic nonlinear media. Vlasov S.N. IAP RAS e-mail: vlasov@hydro.apple.sci-nnov.ru 603950 Russia , N-Novgorod , Uljanov street, 46, e - mail : vlasov @ hydro . appl . sci - nnov . ru.
E N D
Influence of peripheral field on structure of nonlinear focus arising at propagation of a wave beam in cubic nonlinear media Vlasov S.N. IAP RAS e-mail: vlasov@hydro.apple.sci-nnov.ru 603950 Russia, N-Novgorod, Uljanov street,46, e-mail: vlasov@hydro.appl.sci-nnov.ru Collapse IAP RAS
Contents • Jntroduction. Motivation. • Construction of solution. The first order approximation. • The second order approximation. Influence of periphery of beam. • Numerical modelling of influence of "wings" on field in nonlinear focus. Collapse IAP RAS
1. Intoduction The initial equation - transverse Laplacian, - Point of a collapse Self-focusing part of beam “Wings" of beam or nonself-focusing to a part of a beam Amplitude structure of a beam at self-focusing Collapse IAP RAS
Ray structure of self-focusing an axially symmetric beam Collapse IAP RAS
Self-simular solution of V.I. Talanov (1966) 1. Ray structure of self-focusing an axially symmetric beam self-simular solution of first type Collapse IAP RAS
2. Ray structure of self-focusing an axially symmetric beam self-simular solution of second type Collapse IAP RAS
Cross-section structures of a beam, showing the dependences of growth rate of a field at nonlinear focus from cross-section structures Collapse IAP RAS
2. Construction of solution. The first order approximation[L,P,S,S;K,Sh,Z] or (4) Collapse IAP RAS
Comparison of phases of homogeneous beams Comparison of amplitudes of homogeneous beams Collapse IAP RAS
The real part of potential Dependences of power of homogeneous beams from cross-section coordinate Collapse IAP RAS
и Dependence on value Collapse IAP RAS
Self-focusing part of beam “Wings" of beam or nonself-focusing to a part of a beam The first way The second way The explanatory to a way of a choice of a principle of growth rate of a field on an axis Collapse IAP RAS
First way Collapse IAP RAS
Second way Collapse IAP RAS
3. The second order approximation. Collapse IAP RAS
Dependence of amplitude phase and on cross-section coordinate at и Collapse IAP RAS
Dependence of amplitude on cross-section coordinate at various parameters and Collapse IAP RAS
4. Results of numerical calculations Dependence of the amplitude of a field on axes, the equation . Collspse IAP RAS
Dependence of the amplitude of a field on axes, the equation . Collapse IAP RAS
Dependence of the maximal field on size of an initial field for a various degree of focusing Collapse IAP RAS
Dependence of a field in the center of a cavity from time Collapse IAP RAS
Dependence of a field on an axis in system with the combined nonlinearity Collapse IAP RAS
Литература • Таланов В.И. "О самофокусировке волновых пучков в нелинейных средах", Письма ЖЭТФ, 1965, т.2, n.5, с.2187. • Власов С.Н., Петрищев В.А, Таланов В.И. "Усредненное описание волновых пучков в линейных и нелинейных средах", Изв.ВУЗ'ов, Радиофизика, 1971, т.14, n.9, с.1453 3. Захаров В.Е., Сынах В.С., О характере особенности при самофокусировке, ЖЭТФ, 1975, т.68, в.3, с.941-947 Collapse IAP RAS
4. Луговой В.Н., Прохоров А.М., Теория распространения мощного лазерного излучения в нелинейной среде, УФН, 1973, т.111, в.2, с.203-247 5. Власов С.Н., Таланов В.И., Самофокусировка волн, ИПФ РАН, Нижний Новгород, 1997, с.218 6. Власов С.Н., Пискунова Л.В., Таланов В.И., Структура поля вблизи особенности, возникающей при самофокусировке в кубичной среде, ЖЭТФ, 1978, т.75, в.5, с.1602 7. Wood D., The self-focusing singularity in nonlinear Schrodinger equation. Studies in applied mathematics, 1984, v.84, n.2, p.102 Collapse IAP RAS
8. McLaughlin D.W., Papanicolaou G.C., Sulem C., Sulem P.L., Focusing singularity of the cubic Schrodinger equation, Phys. Rev. A, 1986, V.34, n.2, p.1200-1210 9. LeMesurier B.L., Papanicolaou G.C., Sulem C., Sulem P.L., Local structure of the self-focusing singularity of the cubic Schrodinger equation, Physica D, 1988, v.32, p.210-226 10. Kosmatov N.E., Shvets V.F., Zakharov V.E., Computer simulation of wave collapses in the nonlinear Schrodinger equation, Physica D, 1991, v.52, p.16-35 11. Fraiman G.M., Smirnov A.I., The interaction representation in the self-focusing theory , Physica D, 1991, v.52, p.16-35 12. Berge L., Physics reports, Wave collapse in physics: principles and applications to light and plasma physics, 1998, v.303, n.5-6, p.260-370 Collapse IAP RAS
13. Ю.Н.Овчинников, И.М.Сигал, Многопараметрическое семейство коллапсирующих решений критического нелинейного уравнения Шредингера в размерности D=2, ЖЭТФ, 2003г., т.124, в.1(7), с.214-223 14. Fraiman G.M., Litvak A.G., Talanov V.I., Vlasov S.N., Optical self-focusing: stationary beams and femtosecond pulses, in book Self-focusing in the past and present, Schwinger 15. Таланов В.И., Автомодельные волновые пучки в нелинейном диэлектрике, Изв. ВУЗ Радиофизика, 1966, т.9, в.2, с.410 16. Ю.Н.Овчинников, И.М.Сигал, Коллапс в нелинейном уравнении Шредингера критической размерности {}, Письма в ЖЭТФ, 2002г., т.75, в.7 с.428-432 17. В.Н.Гольдберг, В.И.Таланов, Р.Э. Эрм, Самофокусировка аксиально симметричных волновых пучков, ВУЗ'ов, Радиофизика, 1967, т.10, n.5, с. 574 Collapse IAP RAS
18. В.И.Таланов, "О фокусировке света в кубичных средах", Письма ЖЭТФ, 1970, т.11, n.6, с.303 19. С.Н.Гурбатов, С.Н.Власов, К теории самодействия интенсивных световых пучков в плавно неоднородных средах, Изв.ВУЗ'ов, Радиофизика, 1976, т.19, n.8, с.1149- 1155 20. Бондаренко Н.Г., Еремина И.В., Таланов В.И., Уширение спектра при самофокусировке света в стеклах, Письма в ЖЭТФ, 12, в.3, 125(1970), поправка, Письма в ЖЭТФ, 12, 386 (1970) 21. Бондаренко Н.Г., Еремина И.В., Макаров А.И., Использование явления СФ для исследования пробоя при сверхкоротком взаимодействии света с веществом, в сб. Квантовая электроника, Наукова Думка , Киев , 33,с.89(1987) • Tzortzakis S., Sudrie L., Franko M., Prade B et al., Self-guided propagation of ultrashort IR laser pulses in fused silica, Phys. Rev. Letts., 87, n.21, 213902(2001) Collapse IAP RAS
23. С.Н.Власов, Л.В.Пискунова, В.И.Таланов, Трехмерный волновой коллапс в модели нелинейного уравнения Шредингера, ЖЭТФ, 1989, т.95, n.6, с.1945 Collapse IAP RAS