1 / 37

Ec423 Labour Economics

Ec423 Labour Economics. Alan Manning R451 a.manning@lse.ac.uk Office Hour: Tuesdays 11.30-12.30. Overview of Term. Primarily about the distribution of wages – what can explain why some people earn more than others

kalkin
Download Presentation

Ec423 Labour Economics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ec423Labour Economics Alan Manning R451 a.manning@lse.ac.uk Office Hour: Tuesdays 11.30-12.30

  2. Overview of Term • Primarily about the distribution of wages – what can explain why some people earn more than others • Interested in wage differentials that seem common to most countries at most times – by education, age, job tenure, gender, race • But these differentials do vary across countries e.g. gender pay gap bigger in some countries and over time e.g. wage inequality rose in US and UK in 1980s/1990s • Likely to be influenced by demand (e.g. technology, trade), supply (e.g. skills, immigration) and institutions (e.g. unions, minimum wages, welfare state)

  3. Models of Distribution of Wages • Will start with perfectly competitive model • Assumes labour market is frictionless so a single market wage for a given type of labour – the ‘law of one wage’ (note: this assumes no non-pecuniary aspects to work so no compensating differentials) • ‘law of one wage’ sustained by arbitrage – if a worker earns £6 per hour and an identical worker for a second firm earns £5 per hour, the first employer could offer the second worker £5.50 making both of them better-off

  4. The Employer Decision (the Demand for Labour) • Given exogenous market wage, W, employers choose employment, N to maximize: • Where F(N,Z) is revenue functions and where Z are other factors affecting revenue (possibly including other sorts of labour

  5. This leads to familiar first-order condition: • i.e. MRPL=W • From the decisions of individual employers one can derive an aggregate labour demand curve:

  6. The Worker Decision(the Supply of Labour) • Assume only decision is whether to work or not (sometimes called the extensive margin) – no decision about hours of work (the intensive margin) • Assume a fraction n(W,X) of individuals want to work given market wage W and there are L individuals. • The labour supply curve will be given by: • X is other factors influencing labour supply

  7. Equilibrium • Equilibrium is at wage where demand equals supply. This also determines employment. • What influences equilibrium wages/employment in this model: • Demand factors, Z • Supply Factors, X • How these affect wages and employment depends on elasticity of demand and supply curves (see exercize)

  8. What about unemployment? • As defined in labour market statistics (those who want a job but have not got one) does not exist in this model. • Anyone who wants a job at the market wage can get one • Failure of this model to have a sensible concept of unemployment is one reason to prefer models with frictions

  9. What determines wages? • Exogenous variables are demand factors, Z, and supply factors, X • Statements like ‘wages are determined by marginal products’ are a bit loose • True that W=MRPL but MRPL is potentially endogenous as depends on level of employment • Can use model to explain both absolute level of wages and relative wages • A simple model might help to explain this

  10. A Simple Two-Skill Model • Two types of labour, denoted 0 and 1. Assume revenue function is given by: • You should recognise this as a CES production function with CRS

  11. Marginal product of labour of type 0 is: • Marginal product of labour of type 1 is:

  12. As W=MPL we must have: • Write this in logs: • Where σ=1/(1-ρ) is the elasticity of substitution • This gives relationship between relative wages and relative employment

  13. A Simple Model of Relative Supply • We will use the following form: • Where ε is elasticity of supply curve. This might be larger in long- than short-run • Combining demand and supply curves we have that: • Which shows role of demand and supply factors and elasticities

  14. The Distribution of Wages in Imperfect Labour Markets • At end of last term, discussed a simple model of labour market with frictions – the Burdett-Mortensen model. In that model MPL=p so wages with perfect competition determined only by factors that affect MPL • But with frictions other factors are important

  15. Average wage is given by: • So the important factors are • Productivity, p • Reservation wage, b • Rate of job-finding, λ and rate of job-loss, δ i.e. a richer menu of possible explanations • But, also equilibrium wage dispersion (a failure of the ‘law of one wage’) so luck also important

  16. Institutions also important • Even if labour market is perfectly competitive institutions would be expected to affect wages/employment • Possible factors are: • Trade unions • Minimum wages • Welfare state (affects incentives to work)

  17. Stylized Facts About the Distribution of Wages • There is a lot of dispersion in the distribution of ‘wages’ • Most commonly used measure of wages is hourly wage excluding payroll taxes and income taxes/social security contributions • This is neither reward to an hour of work for worker nor costs of an hour of work to an employer so not clear it has economic meaning • But it is the way wage information in US CPS, UK LFS is collected though other countries are different

  18. Overall Distribution of Hourly Wages in the UK - Untrimmed

  19. Overall Distribution of Hourly Wages in the UK – trimmed (between £1 and £100 per hour)

  20. Comments • Sizeable dispersion • Distribution of log hourly wages reasonably well-approximated by a normal distribution (shown by the blue line) • Can reject normality with large sample sizes by a good working approximation • More interested in how earnings are influenced by characteristics

  21. The Earnings Function • Main tool for looking at wage inequality is the earnings function (first used by Mincer) – a regression of log hourly wages on some characteristics: • Earnings functions contain information about both absolute and relative wages but we will focus on latter

  22. Interpreting Earnings Functions • Literature often unclear about what an earnings function meant to be: • A reduced-form? • A labour demand curve (W=MRPL)? • A labour supply curve? • Much of the time it is not obvious – perhaps best to think of it as an estimate of the expectation of log wages conditional on x

  23. An example of an earnings function – UK LFS • This earnings function includes the following variables: • Gender • Race • Education • Family characteristics (married, kids) • (potential) experience (=age –age left FT education) • Job tenure • employer characteristics (union, public sector, employer size) • Industry • Region • Occupation (column 1 only)

  24. An example of an earnings function – UK LFS

  25. Education variables

  26. Family Characteristics

  27. Experience/Job Tenure

  28. Employer Characteristics

  29. Industry (selected relative to manufacturing)

  30. Region (selected relative to Merseyside)

  31. Occupation (relative to craft workers) – only 1st column

  32. Stylized facts to be deduced from this earnings function • women earn less than men • ethnic minorities earn less than whites • education is associated with higher earnings • wages are a concave function of experience, first increasing and then decreasing slightly • wages are a concave function of job tenure • wages are related to ‘family’ characteristics • wages are related to employer characteristics e.g. industry, size • union workers tend to earn more (?)

  33. The variables included here are common but can find many others sometimes included • Labour market conditions – e.g. unemployment rate, ‘cohort’ size • Other employer characteristics e.g. profitability • Computer use- e.g. Krueger, QJE 1993 • Pencil use – e.g. diNardo and Pischke, QJE 97 • Beauty – Hamermesh and Biddle, AER 94 • Height – Persico, Postlewaite, Silverman, JPE 04 • Sexual orientation – Arabshebaini et al, Economica 05

  34. Raises question of what should be included in an earnings function • Depends on question you want to answer • E.g. what is effect of education on earnings – should occupation be included or excluded? • Note that return to education lower if include occupation • Tells us part of return of education is access to better occupations – so perhaps should exclude occupation • But tells us about way in which education affects earnings – there is a return within occupations

  35. Other things to remember • May be interactions between variables e.g. look at separate earnings functions for men and women. Return to experience lower for women but returns to education very similar. • R2 is not very high – rarely above 0.5 and often about 0.3. So, there is a lot of unexplained wage variation: unobserved characteristics, ‘true’ wage dispersion, measurement error.

  36. Problems with Interpreting Earnings Functions • Earnings functions are regressions so potentially have all usual problems: • endogeneity e.g. correlation between job tenure and wages • omitted variable e.g. ‘ability’ • selection – not everyone works e.g. the earnings of women with very young children • Tell us about correlation but we are interested in and ‘correlation is not causation’

  37. Forward Look • Regularities found in UK earnings function found in most countries, most times • Will start this term by trying to understand them

More Related