340 likes | 618 Views
Dongyue Mou and Zeng Xing. cujpeg. A Simple JPEG Encoder With CUDA Technology. Outline. JPEG Algorithm Traditional Encoder What's new in cujpeg Benchmark Conclusion. Outline. JPEG Algorithm Traditional Encoder What's new in cujpeg Benchmark Conclusion. JPEG Algorithm.
E N D
Dongyue Mou and Zeng Xing cujpeg A Simple JPEG EncoderWith CUDA Technology
Outline • JPEG Algorithm • Traditional Encoder • What's new in cujpeg • Benchmark • Conclusion
Outline • JPEG Algorithm • Traditional Encoder • What's new in cujpeg • Benchmark • Conclusion
JPEG Algorithm JPEG is a commonly used method for image compression.JPEG Encoding Algorithm is consist of 7 steps: • Divide image into 8x8 blocks • [R,G,B] to [Y,Cb,Cr] conversion • Downsampling (optional) • FDCT(Forward Discrete Cosine Transform) • Quantization • Serialization in zig-zag style • Entropy encoding (Run Length Coding & Huffman coding)
JPEG Algorithm -- Example This is an example
Divide into 8x8 blocks This is an example
Divide into 8x8 blocks This is an example
RGB vs. YCC The precision of colors suffer less (for a human eye) than the precision of contours (based on luminance) Color space conversion makes use of it! Simple color space model: [R,G,B] per pixel JPEG uses [Y, Cb, Cr] Model Y = Brightness Cb = Color blueness Cr = Color redness
Convert RGB to YCC 8x8 pixel 1 pixel = 3 components MCU with sampling factor (1, 1, 1)
Downsampling Y is taken every pixel , and Cb,Cr are taken for a block of 2x2 pixels 4 blocks 16 x16 pixel MCU: minimum coded unit: The smallest group of data units that is coded. Data size reduces to a half immediately MCU with sampling factor (2, 1, 1)
Apply FDCT 2D IDCT: Bottleneck, the complexity of thealgorithm is O(n^4) 1D IDCT: 2-D is equivalent to 1-D applied in each direction Kernel uses 1-D transforms
Apply FDCT Shift operations From [0, 255] To [-128, 127] Meaning of each position in DCT result- matrix DCT Result
Quantization Quantization Matrix (adjustable according to quality) DCT result Quantization result
Zigzag reordering / Run Length Coding Quantization result [ Number of Zero before me, my value]
Huffman encoding RLC result: [0, -3] [0, 12] [0, 3]......EOB After group number added: [0,2,00b] [0,4,1100b] [0,2,00b] ...... EOB First Huffman coding (i.e. for [0,2,00b]): [0, 2, 00b] => [100b, 00b] ( look up e.g. table AC Chron) Total input: 512 bits, Output: 113 bits output
Outline • JPEG Algorithm • Traditional Encoder • What's new in cujpeg • Benchmark • Conclusion
Traditional Encoder CPU Image Load image Color conversion DCT Quantization Zigzag Reorder Encoding .jpg
Outline • JPEG Algorithm • Traditional Encoder • What's new in cujpeg • Benchmark • Conclusion
Algorithm Analyse 1x full 2D DCT scan O(N4) 8x Row 1D DCT scan 8x Column 1D DCT scanO(N3) 8 threads can paralell work
DCT In Place __device__void blockDCTInPlace(float *block) { for(int row = 0; row < 64; row += 8) vectorDCTInPlace(block + row, 1); for(int col = 0; col < 8; col++) vectorDCTInPlace(block + col, 1); } __device__void vectorDCTInPlace(float *Vect0, int Step) { float *Vect1 = Vect0 + Step, *Vect2 = Vect1 + Step; float*Vect3 = Vect2 + Step, *Vect4 = Vect3 + Step; float *Vect5 = Vect4 + Step, *Vect6 = Vect5 + Step; float *Vect7 = Vect6 + Step; float X07P = (*Vect0) + (*Vect7); float X16P = (*Vect1) + (*Vect6); float X25P = (*Vect2) + (*Vect5); float X34P = (*Vect3) + (*Vect4); float X07M = (*Vect0) - (*Vect7); float X61M = (*Vect6) - (*Vect1); float X25M = (*Vect2) - (*Vect5); float X43M = (*Vect4) - (*Vect3); float X07P34PP = X07P + X34P; float X07P34PM = X07P - X34P; float X16P25PP = X16P + X25P; float X16P25PM = X16P - X25P; (*Vect0) = C_norm * (X07P34PP + X16P25PP); (*Vect2) = C_norm * (C_b * X07P34PM + C_e * X16P25PM); (*Vect4) = C_norm * (X07P34PP - X16P25PP); (*Vect6) = C_norm * (C_e * X07P34PM - C_b * X16P25PM); (*Vect1) = C_norm * (C_a * X07M - C_c * X61M + C_d * X25M - C_f * X43M); (*Vect3) = C_norm * (C_c * X07M + C_f * X61M - C_a * X25M + C_d * X43M); (*Vect5) = C_norm * (C_d * X07M + C_a * X61M + C_f * X25M - C_c * X43M); (*Vect7) = C_norm * (C_f * X07M + C_d * X61M + C_c * X25M + C_a * X43M); } __device__void parallelDCTInPlace(float *block) { int col = threadIdx.x % 8; int row = col * 8; __syncthreads(); vectorDCTInPlace(block + row, 1); __syncthreads(); vectorDCTInPlace(block + col, 1); __syncthreads(); }
Allocation Desktop PC • CPU:1 P4 Core, 3.0GHz • RAM: 2GB Graphic Card • GPU: 16 Core575MHz8SP/Core, 1.35GHz • RAM: 768MB
Binding Huffman Encoding • many conditions/branchs • intensive bit operating • less computing Color conversion, DCT, Quantize • intensive computing • less conditions/branchs
Binding Hardware:16KB Shared Memory Problem: 1 MCU contains702 Byte data Result: maximal 21 MCUs/CUDA Block Hardware: 512 threads Problem: 1 MCU contains 3 Blocks, 1 Block needs 8 threads Result: 1 MCU needs 24 threads 1 CUDABlock = 504 Threads
cujpeg Encoder CPU GPU Image Load image Color conversion DCT Quantization Zigzag Reorder Encoding .jpg
Color Conversion Load image In Place DCT Quantize Reorder Encoding cujpeg Encoder cudaMemcpy( ResultHost, ResultDevice, ResultSize, cudaMemcpyDeviceToHost); CPU for (int i=0; i<BLOCK_WIDTH; i++) myDestBlock[myZLine[i]] = (int)(myDCTLine[i] * myDivQLine[i] + 0.5f); GPU Texture Memory Shared Memory Image Global Memory Quantization Reorder Result Host Memory int b = tex2D(TexSrc, TexPosX++, TexPosY); int g = tex2D(TexSrc, TexPosX++, TexPosY); int r = tex2D(TexSrc, TexPosX+=6, TexPosY); float y = 0.299*r + 0.587*g + 0.114*b - 128.0 + 0.5; float cb = -0.168763*r - 0.331264*g + 0.500*b + 0.5; float cr = 0.500*r - 0.418688f*g - 0.081312*b + 0.5; myDCTLine[Offset + i] = y; myDCTLine[Offset + 64 + i]= cb; myDCTLine[Offset + 128 + i]= cb; cudaMallocArray( &textureCache, &channel, scanlineSize, imgHeight )); cudaMemcpy2DToArray(textureCache, 0, 0, image, imageStride, imageWidth, imageHeight, cudaMemcpyHostToDevice )); cudaBindTextureToArray(TexSrc, textureCache, channel)); cudaMalloc((void **)(&ResultDevice), ResultSize); .jpg
Y Y Cb Cb Cr Cr x24 x24 x24 Scheduling RGB Data For each MCU: • 24 threads • Convert 2 pixel • 8 threads • Convert rest 2 pixel • 24 threads • Do 1x row vector DCT • Do 1x column vector DCT • Quantize 8x scalar value YCC Block DCT Block Quantized/Reordered Data
Outline • JPEG Algorithm • Traditional Encoder • What's new in cujpeg • Benchmark • Conclusion
Benchmark ( Q = 80, Sample = 1:1:1 )
Benchmark Each thread has 240 operations 24 threads process 1 MCU 4096x4096 image includes 262144 MCUs. Total ops: 262144*24*210 = 1509949440 flops Speed: (Total ops) /0.043 = 35.12Gflops
Outline • JPEG Algorithm • Traditional Encoder • What's new in cujpeg • Benchmark • Conclusion
Conclusion CUDA can obviouslyaccelerate the JPEG compression. The over-all performance • Depends on the system speed • More bandwidth • Besser encoding routine • Support downsample