360 likes | 454 Views
ENSO sensitivity to change in stratification in CMIP3. Boris Dewitte Sulian Thual, Sang-Wook Yeh, Soon-Il An, Ali Belmadani. CLIVAR Workshop, Paris, France, 17-19 November 2010 New strategies for evaluating ENSO processes in climate models .
E N D
ENSO sensitivity to change in stratification in CMIP3 Boris Dewitte Sulian Thual, Sang-Wook Yeh, Soon-Il An, Ali Belmadani CLIVAR Workshop, Paris, France, 17-19 November 2010 New strategies for evaluating ENSO processes in climate models
Impact of climate change on the mean stratification in ensemble models ΔT (2xCO2 – PI) Dinezio et al. (2009) Yeh et al. (2009)
Conclusions/Perspectives • The characteristics of the thermocline (depth, sharpness, intensity) needs to be taken into account for determining the stability of ENSO • SODA tells us that an increased stratification leads to more energetic and low-frequency ENSO (Climate change paradox..) • Need to understand the impact of stratification changes on ENSO non-linearities.
Motivation Understand the physical mechanism associated to the ‘rectification’ of ENSO variability/stability by the change in mean state? ? t~6 months η~10-20 years t2~? k~? Cf. Battisti and Hirst (1989)
Change in thermocline depth at decadal timescales On thermocline depth: small amplitude (Wang and An, 2001) Levitus data
T(1960-2001) T(1980-1997)-T(1960-1975) D20 (1980-1997) D20 (1960-1975) (Moon et al., 2004; Dewitte et al., 2009) Change in mean temperature associated to the 1976/77 climate shift
(modes 1 to 3) • The ‘Moon pattern’ indicates that change in mean state cannot be account for just one baroclinic mode..! T(1980-1997)-T(1960-1975)
Sensitivity of ENSO to stratification • Ocean dynamics perspective Shallow-water equations Stratification defined by (c, H) Multimode context Stratification defined by (cn, Pn)
A ‘finer’ representation of the thermocline allows for taking into account the ‘loss’ of energy associated to vertical propagation: Implication for ENSO energetics and feedbacks Interannual variability of vertical displacements in a OGCM simulation (1985-1994) (Dewitte and Reverdin, 2000)
Nonlinear Dynamical Heating Thermocline Feedback Sensitivity of ENSO to stratification • Thermodynamics perspective Zonal Advective Feedback
Mean circulation ( , ) in CMIP3 1 : BCCR-BCM2.0 2 : CCCMA-CGCM3.1 3 : CCCMA-CGCM3.1 (t63) 4 : CNRM-CM3 5 : CSIRO-MK3.0 6 : CSIRO-MK3.5 7 : GFDL-CM2.0 8 : GFDL-CM2.1 9a : GISS-AOM (run1) 9b : GISS-AOM (run2) 11 : GISS-MODEL-E-R 12 : IAP-FGOALS1.0-g 13 : INGV-ECHAM4 14 : INM-CM3.0 15 : IPSL-CM4 16 : MIROC3.2-HIRES 17 : MIROC3.2-MEDRES 18 : MIUB-ECHO-g 19 : MPI-ECHAM5 20 : MRI-CGCM2.3.2A 21 : NCAR-CCSM3.0 22 : UKMO-HadCM3 23 : UKMO-HadGem1 Belmadani et al. (2010)
Thermocline depth bias in CMIP3 1 : BCCR-BCM2.0 2 : CCCMA-CGCM3.1 3 : CCCMA-CGCM3.1 (t63) 4 : CNRM-CM3 5 : CSIRO-MK3.0 6 : CSIRO-MK3.5 7 : GFDL-CM2.0 8 : GFDL-CM2.1 9a : GISS-AOM (run1) 9b : GISS-AOM (run2) 11 : GISS-MODEL-E-R 12 : IAP-FGOALS1.0-g 13 : INGV-ECHAM4 14 : INM-CM3.0 15 : IPSL-CM4 16 : MIROC3.2-HIRES 17 : MIROC3.2-MEDRES 18 : MIUB-ECHO-g 19 : MPI-ECHAM5 20 : MRI-CGCM2.3.2A 21 : NCAR-CCSM3.0 22 : UKMO-HadCM3 23 : UKMO-HadGem1
Nonlinear Dynamical Heating Thermocline Feedback Sensitivity of ENSO to stratification • Thermodynamics perspective Zonal Advective Feedback
~3°N Equator Rossby waves (hn) y=yn y=0° he=rWhn hn=rEhe Kelvin waves (he, ue) y=0°-> y=yn-> The Jin two-strip model(An and Jin, 2001) Hmix
=1 =0 (basin mode) ~4 yrs ~ 9 months Solution of the mode [Xµ=X0.ea.t.cos(β.t +φ)] as a function of coupling efficiency The Jin two-strip model(An and Jin, 2001) α β
Stability of ENSO as a function of thermocline depth Period Increased thermocline depth -------->lower frequency stronger ENSO Growth rate Federov and Philander (2001)
Defining thermocline… • Depth (P1) • Intensity, Sharpness (Pn, n>1) Gent and Luyten (1985)
dD20<0 thermocline dD20>0 180° 90°W dD20>0 dD20<0 CNRM-CM3 N3VAR Decadal variability of Pn – CNRM-CM3 Dewitte et al. (2007) <P1>=0.5, <P2>=0.5, <P3>=0.2 dPn(t)
Conceptual Model (Thual et al., 2010) comparable to the Jin two-strip model (Jin 1997b, An & Jin 2001) except for the ocean dynamics. Atmospherical component : Statistical relationship (SVD) with a coupling coefficient µ. Ocean dynamics : Kelvin and Rossby wave on 3 baroclinic modes : Kn, Rn Thermodynamics : Thermocline depth and zonal currents : H, U Variables :
Thermodynamical feedbacks Thermocline feedback Adimentionalised feedback intensity Zonal advective feedback SODA dataset (1958-2008)
Stability Analysis Find eigenvalues (a+ ib) of from Each eigenmode (a,b) has the form Dominant eigenmode=ENSO mode Eigenvectors of the ENSO mode (µ=1)
Sensitivity to Stratification δ P1(1-δ), P2(1+δ/2), P3(1+δ/2) Stratification acts as a coupling parameter, but with physical meaning.
Sensitivity of ENSO mode to stratification in the TD model Model parameters: P1(1-δ), P2(1+δ/2), P3(1+δ/2) frequency Growth rate
The 1976/77 Climate shifts: Pre-70s to Post-70s : Strong increase in stratification (δ =120%). => Stronger, lower frequency ENSO Data: SODA
The 2000 shifts: Post-2000 : Slight decrease in stratification (δ =95%). => ENSO variability displaced toward the west. Processes ? Data: SODA
« Metrics » for the sensitivity to stratification change using the extended Jin’s two-strip model
2xCO2 - PI EOF1 of low-passed filtered T(x,z,y=0) (PI runs) Change in feedback processes MRI GFDL Yeh et al. (2010)
Sensitivity of ENSO to a warming climate: GFDL versus MRI Yeh et al. (2010) Change in feedback processes
Conclusions/Perspectives • The characteristics of the thermocline (depth, sharpness, intensity) needs to be taken into account for determining the stability of ENSO • SODA tells us that an increased stratification leads to more energetic and lower-frequency ENSO (Climate change paradox.?.) • Need to understand the impact of stratification changes on ENSO non-linearities.
« Metrics » for the sensitivity to stratification change using the extended Jin’s two-strip model
Low frequency change of temperature (EOF1) in the MRI and GFDL models MRI GFDL Change in stratification does project on the gravest modes (n=1,3) Impact ENSO stability Change in stratification tends to project on the high-order or « very slow » modes (n>3) impact Ekman layer physics
Change in feedback processes Yeh et al. (2010)
Change in feedback processes Yeh et al. (2010)
Low frequency change of temperature (EOF1) in CMIP3 MIROC3_3_HIRES MIROC3_3_MEDRES MPI_ECHAM5 MRI_CGCM2_3_2A NCAR_CCSM3_0 UKMO_HADCM3
Low frequency change of temperature (EOF1) in CMIP3 CCCMA_CGCM3_1_t63 CNRM_CM3 CSIRO_MK3_5 GFDL_CM2_0 INMCM3_0 MIUB_ECHO_G CCCMA_CGCM3_1 FGOALSrun1 GFDL_CM2_1 INVG_ECHAM4 IPSL_CM4 GISS_AOMrun1