880 likes | 905 Views
Plant biofuel related Novel biofuel Novel ways to enhance biofuel production Biophotovoltaics Photosynthesis related Enhancing light harvesting Enhancing carbon capture Carboxysomes in higher plants Carbonic anhydrase C4 rice Plant biotechnology related Plantibodies
E N D
Plant biofuel related • Novel biofuel • Novel ways to enhance biofuel production • Biophotovoltaics • Photosynthesis related • Enhancing light harvesting • Enhancing carbon capture • Carboxysomes in higher plants • Carbonic anhydrase • C4 rice • Plant biotechnology related • Plantibodies • Other useful products made in plants • Bioremediation • Heavy metals • Pesticides
Agriculture related • Improving nutritional value by GMO or wide-breeding • Vitamins • Essential amino acids • Iron • Other nutrients • Reducing fertilizer needs • Selecting for water-use efficiency • Selecting for efficiency of other nutrients • Moving N-fixation to other species • Improving mycorrhizae • GMO for weed and pest control • Round-up resistance • BT toxin • Treating viruses, viroids, etc by GMO
Light regulation of growth • Plants sense • Light quantity • Light quality (colors) • Light duration • Direction it comes from Have photoreceptors that sense specific wavelengths
Blue Light Responses Circadian Rhythms Solar tracking Phototropism Inhibiting stem elongation Chloroplast movement Stomatal opening Gene expression Flowering in Arabidopsis
Blue Light Responses Responses vary in their fluence requirements & lag time Stomatal opening is reversible by greenlight; others aren’t Multiple blue receptors with different functions!
Blue Light Responses Responses vary in their fluence requirements & lag time Stomatal opening is reversible by greenlight; others aren’t Multiple blue receptors with different functions! Identified by mutants, then clone the gene and identify the protein
Blue Light Responses Cryptochromes repress hypocotyl elongation Stimulate flowering Set the circadian clock (in humans, too!) Stimulate anthocyanin synthesis
Blue Light Responses Cryptochromes repress hypocotyl elongation Stimulate flowering Set the circadian clock (in humans, too!) Stimulate anthocyanin synthesis 3 CRY genes
Blue Light Responses 3 CRY genes All have same basic structure: Photolyase-like domain binds FAD and a pterin (MTHF) that absorbs blue & transfers energy to FAD in photolyase (an enzyme that uses light energy to repair pyr dimers) DAS binds COP1 & has nuclear localization signals CRY1 & CRY2 kinase proteins after absorbing blue
Blue Light Responses 3 CRY genes CRY1 & CRY2 kinase proteins after absorbing blue CRY3 repairs mt & cp DNA!
Blue Light Responses • 3 CRY genes • CRY1 regulates blue effects on growth: light-stable • Triggers rapid changes in PM potential & growth
Blue Light Responses • 3 CRY genes • CRY1 regulates blue effects on growth: light-stable • Triggers rapid changes in PM potential & growth • Opens anion channels in PM
Blue Light Responses • 3 CRY genes • CRY1 regulates blue effects on growth: light-stable • Triggers rapid changes in PM potential & growth • Opens anion channels in PM • Stimulates anthocyanin synthesis
Blue Light Responses • 3 CRY genes • CRY1 regulates blue effects on growth: light-stable • Triggers rapid changes in PM potential & growth • Opens anion channels in PM • Stimulates anthocyanin synthesis • Entrains the circadian clock
Blue Light Responses • 3 CRY genes • CRY1 regulates blue effects on growth: light-stable • Triggers rapid changes in PM potential & growth • Opens anion channels in PM • Stimulates anthocyanin synthesis • Entrains the circadian clock • Also accumulates in nucleus & interacts with PHY & COP1 to regulate photomorphogenesis, probably by kinasing substrates
Blue Light Responses • 3 CRY genes • CRY1 regulates blue effects on growth: light-stable • Triggers rapid changes in PM potential & growth • Opens anion channels in PM • Stimulates anthocyanin synthesis • Entrains the circadian clock • Also accumulates in nucleus & interacts with PHY & COP1 to regulate photomorphogenesis, probably by kinasing substrates 2. CRY2 controls flowering
Blue Light Responses • 3 CRY genes • CRY1 regulates blue effects on growth: light-stable 2. CRY2 controls flowering: little effect on other processes • Light-labile
Blue Light Responses • 3 CRY genes • CRY1 regulates blue effects on growth: light-stable 2. CRY2 controls flowering: little effect on other processes • Light-labile 3. CRY3 enters cp & mito, where binds & repairs DNA!
Blue Light Responses 3 CRY genes CRY1 regulates blue effects on growth 2. CRY2 controls flowering: little effect on other processes CRY3 enters cp & mito, where binds & repairs DNA! Cryptochromes are not involved in phototropism or stomatal opening!
Blue Light Responses Cryptochromes are not involved in phototropism or stomatal opening! Phototropins are!
Blue Light Responses Phototropins areinvolved in phototropism & stomatal opening! Many names (nph, phot, rpt) since found by several different mutant screens
Phototropins Many names (nph, phot, rpt) since found by several different mutant screens Mediate blue light-induced growth enhancements
Phototropins Many names (nph, phot, rpt) since found by several different mutant screens Mediate blue light-induced growth enhancement & blue light-dependent activation of the plasma membrane H+-ATPase in guard cells
Phototropins Many names (nph, phot, rpt) since found by several different mutant screens Mediate blue light-induced growth enhancement & blue light-dependent activation of the plasma membrane H+-ATPase in guard cells Contain light-activated serine-threonine kinase domain and LOV1 (light-O2-voltage) and LOV2 repeats
Phototropins Many names (nph, phot, rpt) since found by several different mutant screens Mediate blue light-induced growth enhancement & blue light-dependent activation of the plasma membrane H+-ATPase in guard cells Contain light-activated serine-threonine kinase domain and LOV1 (light-O2-voltage) and LOV2 repeats LOV1 & LOV2 bind FlavinMonoNucleotide cofactors
Phototropins Many names (nph, phot, rpt) since found by several different mutant screens Mediate blue light-induced growth enhancement & blue light-dependent activation of the plasma membrane H+-ATPase in guard cells Contain light-activated serine-threonine kinase domain and LOV1 (light-O2-voltage) and LOV2 repeats LOV1 & LOV2 bind FlavinMonoNucleotide cofactors After absorbing blue rapidly autophosphorylate & kinase other proteins
Phototropins After absorbing blue rapidly autophosphorylate & kinase other proteins 1 result = phototropism due to uneven auxin transport
Phototropins After absorbing blue rapidly autophosphorylate & kinase other proteins 1 result = phototropism due to uneven auxin transport Send more to side away from light!
Phototropins After absorbing blue rapidly autophosphorylate & kinase other proteins 1 result = phototropism due to uneven auxin transport Send more to side away from light! Phot 1 mediates LF
Phototropins After absorbing blue rapidly autophosphorylate & kinase other proteins 1 result = phototropism due to uneven auxin transport Send more to side away from light! PHOT 1 mediates LF PHOT2 mediates HIR
Phototropins 2nd result = stomatal opening via stimulation of guard cell PM proton pump Also requires photosynthesis by guard cells!
Phototropins 2nd result = stomatal opening via stimulation of guard cell PM proton pump Also requires photosynthesis by guard cells & signaling from xanthophylls
Phototropins 2nd result = stomatal opening via stimulation of guard cell PM proton pump Also requires photosynthesis by guard cells & signaling from xanthophylls npq mutants don’t make zeaxanthin & lack specific blue response
Phototropins 2nd result = stomatal opening via stimulation of guard cell PM proton pump Also requires photosynthesis by guard cells & signaling from xanthophylls npq mutants don’t make zeaxanthin & lack specific blue response Basic idea: open when pump in K+
Phototropins 2nd result = stomatal opening via stimulation of guard cell PM proton pump Also requires photosynthesis by guard cells & signaling from xanthophylls npq mutants don’t make zeaxanthin & lack specific blue response Basic idea: open when pump in K+ Close when pump out K+
Phototropins Basic idea: open when pump in K+ Close when pump out K+ Control is hideously complicated!
Phototropins Basic idea: open when pump in K+ Close when pump out K+ Control is hideously complicated! Mainly controlled by blue light
Phototropins Basic idea: open when pump in K+ Close when pump out K+ Control is hideously complicated! Mainly controlled by blue light, but red also plays role
Phototropins Basic idea: open when pump in K+ Close when pump out K+ Control is hideously complicated! Mainly controlled by blue light, but red also plays role Light intensity is also important
Phototropins Mainly controlled by blue light, but red also plays role Light intensity is also important due to effect on [photosynthate] in guard cells
Phototropins Mainly controlled by blue light, but red also plays role Light intensity is also important due to effect on [photosynthate] in guard cells PHOT1 &2 also help
Phototropins Mainly controlled by blue light, but red also plays role Light intensity is also important due to effect on [photosynthate] in guard cells PHOT1 &2 also help Main GC blue receptor is zeaxanthin!
Phototropins Mainly controlled by blue light, but red also plays role Light intensity is also important due to effect on [photosynthate] in guard cells PHOT1 &2 also help Main GC blue receptor is zeaxanthin! Reason for green reversal
Phototropins Mainly controlled by blue light, but red also plays role Light intensity is also important due to effect on [photosynthate] in guard cells PHOT1 &2 also help Main GC blue receptor is zeaxanthin! Reason for green reversal water stress overrides light!
Phototropins water stress overrides light: roots make Abscisic Acid: closes stomates & blocks opening regardless of other signals!
UV-B perception Plants also use UV-B to control development
UV-B perception Plants also use UV-B to control development
UV-B perception Plants also use UV-B to control development
UV-B perception Plants also use UV-B to control development Absorbed by UVR8: goes from inactive dimer to active monomer
UV-B perception Plants also use UV-B to control development Absorbed by UVR8: goes from inactive dimer to active monomer +ve regulators = COP1 & HY5