1 / 42

A Comparison of the Overburden Loading in ARMPS and LaModel

A Comparison of the Overburden Loading in ARMPS and LaModel. ARMPS. LaModel. Presenter: Ihsan Berk Tulu (WVU) Keith A. Heasley (WVU) Christopher Mark (NIOSH) July 27, 2010 29 th International Conference on Ground Control in Mining.

karlyn
Download Presentation

A Comparison of the Overburden Loading in ARMPS and LaModel

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Comparison of the Overburden Loadingin ARMPS and LaModel ARMPS LaModel Presenter: Ihsan Berk Tulu (WVU) Keith A. Heasley (WVU) Christopher Mark (NIOSH) July 27, 2010 29th International Conference on Ground Control in Mining

  2. Outline of Presentation • Introduction • Analysis of Retreat Pillar Mining Program (ARMPS). • ARMPS 2002. • ARMPS 2010 and Pressure Arch Method. • Laminated Model (LaModel) • Calibration of the lamination thickness. • Calibration of the gob stiffness.

  3. Outline of Presentation • Load Analyzes LaModel – ARMPS • Methodology used during the load analyzes. • Load Analyzes Results. • Stability Factor Analyzes. • ARMPS 2002 • ARMPS 2010 • LaModel • Summary and Conclusions

  4. Introduction • Pillar Recovery accounts for less than 10% of the coal produced from Underground coal mines (1989 to 1996) (Mark et al., 2003). • Also, it accounts for more than 25% of the all ground fatalities (Mark et al., 2003). • MSHA and NIOSH • Global stability through proper pillar design. • Local stability through proper roof support. • Worker safety through proper section management.

  5. Introduction • ARMPS and the LaModel programs have been used successfully in the U.S. for designing safe pillar recovery operations for many years. • After Crandall Canyon Mine Disaster (August 6th, 2007) • There is a need for an improved design methodology for deep cover pillar retreat mines. • There is a need for standardized method of calibrating LaModel.

  6. Analysis of Retreat Mining Pillar Stability (ARMPS) • ARMPS was originally developed by NIOSH in the mid 1990’s (Mark and Chase, 1997.) to prevent. • Squeezes • Collapses • Bursts • ARMPS consists of three basic calculation steps: • Estimate the applied loads. • Estimate the load bearing capacity of the pillars. • Compare the load to the capacity.

  7. Analysis of Retreat Mining Pillar Stability (ARMPS) • Applied loads estimated by ARMPS 2002. • Development loads based on tributary area method. • Abutment loads based on abutment angle concept.

  8. Analysis of Retreat Mining Pillar Stability (ARMPS) • ARMPS strength is not coming from the accuracy of its’ calculations. • ARMPS strength is the large data base of retreat mining case histories that it has been calibrated against.

  9. Analysis of Retreat Mining Pillar Stability (ARMPS) • First version of the ARMPS (1997), calibrated with 150 cases. • Design stability factor (SF) was 1.5. • Overburden depth deeper than 750 ft SF became less meaningful. • ARMPS 2002 was calibrated with 250 cases.

  10. Analysis of Retreat Mining Pillar Stability (ARMPS)

  11. Analysis of Retreat Mining Pillar Stability (ARMPS) • Actual strength of the large pillars at deeper cover might be higher than the predicted one. • ARMPS2002 predicts loads higher than the actual ones. Why the lower stability factors may be successful with deeper cover?

  12. ARMPS 2010 – Pressure Arch Loading

  13. ARMPS 2010 – Pressure Arch Loading • Pressure Arch Factor

  14. ARMPS 2010 – Pressure Arch Loading

  15. ARMPS 2010 – Pressure Arch Loading

  16. LaModel • LaModel program was originally developed in 1993. • It is a Displacement-Discontinuity Variation of the Boundary-Element Method. • Numerical Modeling – Mathematical approximation of the geo-mechanical behavior of the coal and overburden, based on the fundamental laws of physics.

  17. LaModel • Natural geologic material does not follow theoretical behavior; It is inhomogeneous, non-isotropic, inelastic. • Models require complex, difficult-to-obtain input information. • Output of the models depends on the input parameters. • Models must be calibrated with reality.

  18. LaModel • Calibrating the LaModel for Deep Cover Pillar Retreat Mining : • Calculating the lamination thickness based on the extent of abutment loading. • Calculating coal material properties based on a Mark-Bienawski pillar strength. • Calculating gob properties based on expected gob loading.

  19. LaModel • Calibration of the lamination thickness:

  20. LaModel • Calculating gob properties based on expected gob loading.

  21. Load Analyses LaModel – ARMPS • Deep Cover Database: As part of the research to improve ARMPS and LaModel programs, a database of deep cover retreat mining case studies was developed (Heasley, 2010) • 52 Cases from 11 different mines. • 7 mines from Central Appalachian coal fields. • 4 mines from Western coal fields. • 31 successful cases. • 21 unsuccessful cases.

  22. Load Analyses LaModel – ARMPS • Deep Cover Database

  23. Load Analyses LaModel – ARMPS • Methodology Used During the Load Analyses. • Ideal mine geometry is used for each cases. • Model with average panel dimensions from 52 case histories. • Each cases were divided into the four steps. • Step 1: Development only • Step 2: Step 1 + Side Gob • Step 3: Step 2 + Active Gob • Step 4: Step 3 + Slab Cut

  24. Load Analyses LaModel – ARMPS • Overburden loads calculated on the different areas of the panel.

  25. Load Analyses Results • Development load.

  26. Load Analyses Results • Load Analyses - Development

  27. Load Analyses Results • Load Analyses – Step 2

  28. Load Analyses Results • Step 2 Loads on AMZ: Development +Initial side Abutment Load + Load Transfer from the barriers (if barrier pillar yields.)

  29. Load Analyses Results • Load Analyses – Step 3

  30. Load Analyses Results • Load Analyses – Step 4

  31. Stability Factor Comparison LaModel – ARMPS

  32. Stability Factor Comparison LaModel – ARMPS • ARMPS 2002 failure and success comparison. • 38% of the unsuccessful (failure) case histories and 64% of the successful case histories are correctly classified. • Overall classification accuracy is 54%.

  33. Stability Factor Comparison LaModel – ARMPS • ARMPS 2010 failure and success comparison. • 52% of the unsuccessful (failure) case histories and 55% of the successful case histories are correctly classified. • Overall classification accuracy is 54%.

  34. Stability Factor Comparison LaModel – ARMPS • LaModel failure and success comparison. • 76% of the unsuccessful (failure) case histories and 48% of the successful case histories are correctly classified. • Overall classification accuracy is 60%.

  35. Stability Factor Comparison LaModel – ARMPS • Summary of the Stability Factor comparison.

  36. Summary and Conclusions • After Crandall Canyon Mine Disaster (August 6th, 2007) • NIOSH improved ARMPS program (Mark, 2010). • Dr. Heasley (WVU) proposed standardized method of calibrating the LaModel and improved LaModel. • Overburden load distributions calculated by ARMPS 2002, ARMPS 2010 and LaModel are analyzed and compared.

  37. Summary and Conclusions • ARMPS 2002 vs. ARMPS 2010. • Depth effect eliminated.

  38. Summary and Conclusions • If LaModel is calibrated as proposed by Heasley (2010). • Extend of the abutment zone calculated by LaModel matches the one used by ARMPS. • 2-D Magnitude of the abutment load calculated by LaModel also matches with the one calculated by ARMPS. • LaModel calculated the active gob load less than the ARMPS. (3-D scenario at the active line)

  39. Summary and Conclusions • LaModel distributes the overburden loads based on: • Bending stiffness of the laminated overburden and relative stiffness's and the failure strengths of the production and barrier pillars. • Overburden load distribution calculated by LaModel might be much closer to ARMPS 2010 with strain softening material model.

  40. Summary and Conclusions • Stability Factor comparison based on the old and new designs. • Overall classification of the failure and success are same for both ARMPS 2002 and ARMPS 2010. • ARMPS 2010 classified the failure cases better than the ARMPS 2002. • LaModel may be considered to classify the case histories slightly better than ARMPS 2010.

  41. Summary and Conclusions • Future studies to improve the ARMPS and LaModel for deep cover pillar recovery operations. • Abutment extend need to be investigated. • Load distribution need to be investigated. • Abutment angle concept need to be improved. • Load transfer from the barrier pillars need to be investigated.

  42. Questions?

More Related