1 / 25

AGN downsizing は階層的銀河形成論で説明 できるか?

AGN downsizing は階層的銀河形成論で説明 できるか?. Motohiro Enoki. Tomoaki Ishiyama (Tsukuba Univ.) Masakazu A. R. Kobayashi (Ehime Univ.) Masahiro Nagashima (Nagasaki Univ .). §1. Introduction. AGN is fueled by accretion of gas onto Supermassive Black Holes (SMBH) in the nuclei of host galaxy.

kasie
Download Presentation

AGN downsizing は階層的銀河形成論で説明 できるか?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AGN downsizing は階層的銀河形成論で説明できるか? MotohiroEnoki Tomoaki Ishiyama (Tsukuba Univ.) Masakazu A. R. Kobayashi (Ehime Univ.) Masahiro Nagashima(Nagasaki Univ.)

  2. §1. Introduction • AGN is fueled by accretion of gas onto Supermassive Black Holes (SMBH) in the nuclei of host galaxy. • Many nearby galaxies have central SMBHs and their physical properties correlate with those of spheroids of their host galaxies. • MBH / Mbulge = 0.001 – 0.006 • MBH ∝sbulgen , n = 3.7 – 5.3 => AGN/SMBHs formation physically link galaxy formation. => To study the evolution of AGN, it is necessary to construct a model that includes galaxy formation and AGN/SMBH formation.

  3. Hierarchical galaxy formation scenario In the standard hierarchical clustering scenario in a cold dark matter (CDM) universe, dark halos cluster gravitationally and merge together. In each dark halo, a galaxy formed. Galaxies in a merged dark halo sometimes merge together and a more massive galaxy is formed. => More massive galaxies formed at lower redshifts. If the brighter AGNs have the more massive SMBHs, then brighter AGNs must form at lower redshifts because massive galaxies have massive SMBHs. => The space densities of luminous AGNs peak at lower redshifts than those of faint AGNs.

  4. Observed Evolution of AGN space density X-ray optical Ueda et al. (2003) Ikeda et al. (2012)

  5. Downsizing evolution of AGNs. • Observational results • => The space densities of luminous AGNs peak at higher redshifts than those of faint AGNs. • => Downsizing (or Anti-hierarchical) evolution of AGNs. This downsizing evolution of AGN density seems to conflict with the hierarchical galaxy formation scenario. In this study, we investigate whether the downsizing trend of AGN density evolution can be explained using a semi-analytic model of galaxy and SMBH/AGN formation based on a hierarchical clustering scenario (SA-model).

  6. §2. Semi-analytical model of galaxy and SMBH/AGN formation (SA-model) In order to compare enormous observational data with theoretical predictions, it is inevitable to show the statistical quantities. • AGN number densities (luminosity functions) • Spatial distributions of AGNs (AGN auto correlation functions, AGN-galaxy cross correlation functions ). SA-model approach enables us to study statistical properties of galaxies and AGNs.

  7. Hot Gas Dark Halo Intra Cluster Gas galaxy (star & cold gas) Galaxy formation scenario in CDM universe CLUSTERLING OF DARK HALOS *Collapse of dark halo *Shock heating => Hot gas *galaxy merger *galaxy evolution Hot Gas =>radiative cooling =>Cold Gas =>star formation =>SNe reheating *Formation of galaxy clusters

  8. Semi-analytical model of galaxy and SMBH/AGN formation (SA model) -- Construction of the merging histories of dark halos * Monte Carlo realizations based on analytic mass functions of dark halo (Extended Press-Schechtermodel) * Cosmological N-body simulations -- Evolution of baryonic components within dark halo * Simple analytical models for physical processes (gas cooling, star formation, SN feedback, galaxy merging, gas accretion onto SMBH and etc.)

  9. Numerical Galactic Catalog : nGC Our SA model of galaxy formation model with cosmological N-body simulation : Numerical Galactic Catalog : nGC (Nagashima, Yahagi, Enoki, Yoshii & Gouda 2005). • Box size : 100 Mpc, 200 Mpc • Number of particles : 5123 • SMBH/AGN formation model (Enoki et al. 2003) included Now, we have started to construct NewnGC. • Galaxy formation model updated • Large box size N-body simulations (Ishiyama et al. ) • Box size : 400 Mpc • Number of particles : 20483

  10. Assumptions 1) When host galaxies merge, the pre-existing SMBHs in the progenitors immediately evolve to the gravitational wave emission regime and coalesce. AGN/SMBH Formation Model (Enoki et al. 2003) 2) During a major merger of galaxies, a certain fraction of the cold gas that is proportional to the total mass of newly formed stars at starburst accretes onto the SMBH. This accretion process leads to a AGN activity. (cold gas => BH) fBH: fixed by matching the observed relation Mbulge-MBH We adopted fBH=0.01

  11. dark halo disk star formation disk star hot gas cold gas galaxy bulge bulge star SMBH Flow of baryons in the SA-model galaxy cooling hot gas SNe feedback major merger starburst accretion *galaxy = disk + bulge disk = disk star + cold gas bulge = bulge star + black hole * hot gas ; diffuse gas, virial temperature

  12. AGN B-band luminosity AGN light curve model eB: the radiative efficiency in the B-band tlife:AGN lifetime scale tlifescales with the dynamical time scale of the host galaxy eB, tlife(z = 0); fixed by matching the observed B-band luminosity function of AGN at z = 2. eB, = 0.0055 tlife(z = 0) = 50 Myr

  13. AGN luminosity functions at z = 2 eB, = 0.0055, tlife(z = 0) = 50 Myr

  14. §3. AGN number density evolution Our SA-model results. The SA-model can reproduce downsizing trend.

  15. Why does the SA-model show down sizing trend ? In our SA-model, the mass growth processes of SMBH are (1) cold gas accretion during starburst and (2) SMBHs coalescence. At high redshifts, during major merger, SMBHs are fueled by much cold gas and become luminous AGNs because galaxies have much cold gas. However, cold gas in galaxies depleted over time by star formation. The amounts of cold gas accreted onto SMBH decrease with time => At lowz, major merger does not always lead luminous AGN. => The space density of luminous AGNs decreases more quickly than those of faint AGNs.

  16. Redshift evolution of cold gas mass to stellar mass The cold gas mass ratio in a galaxy decreases with time. => The amounts of cold gas accreted onto SMBH decrease with time.

  17. B-band Eddington Ratiodistributions AGNs withMB< -22 The fraction of high Eddington ratio AGNs ( log [LB / LEdd] > -1 ) decreases with time.

  18. Redshift evolution of mean B-band Eddington Ratio AGNs withMB< -22 The mean of logarithm of the B-band Eddington ratio (<log[ LB / LEdd ]>) decreases with time. => The ratio of Maccto MBH decreases with time.

  19. §4. Comparison with observational data

  20. The space density of AGNs at z < 1 The faint AGN space density in our model is larger than observed faint AGN density. => This suggests that the cold gas mass accreted on a SMBH in our model is too large at z < 1. In our model, we assume that all the cold gas supplied from host galaxy accretes onto the SMBH.  The coevolution model of a SMBH and a circumnuclear disk proposed by Kawakatu & Wada (2008) . In their model, not all the gas supplied from host galaxy accretes onto the SMBH because part of the gas is used to form stars in the circumnuclear disk.

  21. The space density of QSOs at z > 3 There is a discrepancy between observational results themselves of faint AGN space densities. => Further observations of faint AGNs in a wider survey area are crucial to obtain AGN densities. => Hyper Suprime-Cam (HSC) survey will provide useful constraints on AGN & SMBH evolution model. Ikeda et al. (2012)

  22. §5. QSO clustering (in progress) Cosmological N-body simulations enable us to study the clustering of QSOs and galaxies. The number density of QSOis small :nqso = 10-8~10-6Mpc-3 => Large simulation boxes are required.  In the case of a large box size simulation, the mass resolution is low. • Current version (Ishiyama) • Box size : 400 Mpc • Number of particles : 20483 • Mass resolution : ~ 3.1×108 M8

  23. QSO and galaxy distributions (preliminary) Current NewnGC result at z = 3 (400Mpc ⇔ 3.5 deg) 400 Mpc ×400Mpc× 20 Mpc

  24. Future plan We will use large box simulations (Ishiyama et al.). *Use of “K”computer (2013? ~ 2016?) – enables N = 40963, 81923calculation N = 81923calculation enables us ► box size : 1600 Mpc> 1Gpc ! ► to get 103 rare objects with n~10-6 Mpc-3 => The spatial distribution of AGNs can be discussed.

  25. §6. Summary Inour semi-analytic model of galaxy and AGN formation based on a hierarchical structure formation scenario, the evolution of AGN space density shows downsizing trend. => We suggest that the downsizing evolution of the AGN space density is not necessarily contradictory to hierarchical structure formation scenarios. • We plan to improve our SA-model to include the SMBHs and circumnuclear disks coevolution model of Kawakatu & Wada (2008). => Study of the clustering of AGNs and galaxies

More Related