1 / 64

Füst György III. Belklinika

Kapcsolat vizsgálat I: egy és többváltozós lineáris regressziós vizsgálatok és alkalmazásaik a klinikumban. Füst György III. Belklinika. KÉT VÁLTOZÓ KÖZÖTTI KAPCSOLAT MÉRÉSI MÓDJAI: A KORRELÁCIÓ ÉS A REGRESSZIÓ.

Download Presentation

Füst György III. Belklinika

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kapcsolat vizsgálat I: egy és többváltozós lineáris regressziós vizsgálatok és alkalmazásaik a klinikumban. Füst György III. Belklinika

  2. KÉT VÁLTOZÓ KÖZÖTTI KAPCSOLAT MÉRÉSI MÓDJAI: A KORRELÁCIÓ ÉS A REGRESSZIÓ • Az alapvető kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában, stb. mért különböző változó között? • Ha csak arra vagyunk kíváncsiak, hogy ilyen kapcsolat fennáll-e, akkor korrelációt számítunk, ha arra is, hogy ha fennáll ilyen kapcsolat, akkor az egyik változó értékeiből hogyan lehet előre jelezni a másik változó értékeit, akkor regressziós, általában lineáris regressziós számítást végzünk. A korreláció és a regresszió között sok a hasonlóság, ha a korreláció mérőszáma az un. korrelációs koefficiens szignifikáns, akkor mindig szignifikáns lesz a lineáris regresszió is. • A leggyakrabban használt és az orvosi irodalomban igen gyakran megtalálható eljárások.

  3. A KORRELÁCIÓ • A két változó közötti egyenes arányú, fordított arányú vagy hiányzó kapcsolat (pozitív, negatív vagy nem létező korreláció) lehet. Becslése az értékek ábrázolása alapján lehetséges. • ELŐSZÖR MINDIG RAJZOLJUNK!!!

  4. A korrelációs koefficiens legfontosabb tulajdonságai • Ha nincs lineáris korreláció, akkor a korrelációs koefficiens értéke: 0, tökéletes pozitív, ill. negatív lineáris korreláció fennállása esetén a korrelációs koefficiens értéke +1,00, ill. -1,00. • A korrelációs koefficiens értéke független a mértékegységektől, amelyekben a két változó rögzítve van (pl. testmagasság és testsúly közötti korreláció, mindegy, hogy ezek milyen mértékegységben (kg, font, cm, inch) vannak megadva). • A korrelációs koefficiens értékét az outlier (kiugró) értékek igen erősen befolyásolják. Ezt minden esetben végig kell gondolni és pl. adat-transzformációt kell végrehajtani. A kiugró érték lehet egy szabálytalan, torzult eloszlás eredménye, ilyenkor segíthet a transzformáció, vagy lehet mérési hiba,ilyenkor lehet a mérést ismételni, vagy az értéket kizárni • 4, A korreláció nem jelent ok-okozati kapcsolatot, mert ez lehet annak a következménye, hogy-az x tengelyre felvett változó befolyásolja az y tengelyre felvettet-az y tengelyre felvett változó befolyásolja az x tengelyre felvettet-egyik eset sem áll fenn, hanem egy harmadik tényező mindkettőt egy irányba (pozitív korreláció) vagy különböző irányokba (negatív korreláció) mozdítja el.

  5. A korrelációs koefficiens legalacsonyabb értéke: 0 (nincs lineáris korreláció), a legmagasabb +1,0 vagy -1,0 (tökéletes pozitív, ill. negatív lineáris korreláció) • A korrelációs koefficiens értéke független a mértékegységektől, amelyekben a két változó meg van adva pl. testmagasság és testsúly közötti korreláció, mindegy, hogy milyen mértékegységben (kiló, font, cm, inch) vannak ezek megadva) • A korrelációs koefficiens értékét az outlier (kilógó) értékek igen erôsen befolyásolják. Ezt minden esetben végig kell gondolni, az adatokat transzformálni, esetleg, ha ez korrekt korrigálni is lehet. A kilógó érték lehet egy szabálytalan, torzult eloszlás eredménye, ilyenkor segíthet a transzformáció, vagy lehet mérési hiba, ilyenkor lehet óvatosan korrigálni

  6. EGY KIUGRÓ (OUTLIER) ÉRTÉK HATÁSA A KORRELÁCIÓS KOEFFICIENS NAGYSÁGÁRA ÉS SZIGNIFIKANCIÁJÁRA

  7. A korreláció (a két változó közötti kapcsolat) erősségének megítélése. A leegyszerűsített megoldás

  8. A PEARSON-FÉLE KORRELÁCIÓS KOEFFICIENS SZÁMÍTÁS ELSŐ LÉPÉSE, AZ X ILL. Y ÁTLAGTÓL VALÓ TÁVOLSÁG

  9. A determináltsági koefficiens (r2) Az r2 érték azt fejezi ki, hogy az egyik változó változásai várhatóan milyen mértékben járnak a másik változó változásaival, vagyis mennyire lehet az egyikből a másikat előre jelezni. Ha az r=0,50, az r2=0,25, akkor 25%-ban lehet előre jelezni az egyik változóból a másikat, és fordítva (a korrelációnál a két változó felcserélhető). Példánkban a két komplement fehérje (C9 és C1-INH) között az r=0,62, az r2=0,38, tehát a C9 szintje alapján 39%-ban lehet a C1-INH szintet, ill. a C1-INH szintje alapján a C9 szintet előre jelezni.

  10. Az r CI-a • Az r értékeknek is van eloszlása, ez azonban nem szimmetrikus és csak nagyobb (N>10) esetszámnál értékelhető. Minden program megcsinálja, kézzel elég macerás, A C9 és C1-INH koncentráció közötti r (0,62) CI-a 0,42-0,76.

  11. A korrelációs koefficiens szignifikanciája

  12. A lineáris (Pearson) korrelációs koefficiens kiszámíthatóságának feltételei I. • A vizsgált egyének (állatok, minták, stb) egy nagyobb populációból véletlenszerűen lettek kiválasztva • Minden vizsgált egyénnél megmérték mindkét (x és y) változót (a hiányzó értékekkel a legtöbb számítógépes program boldogul) • A megfigyelések egymástól függetlenek A vizsgált egyének kiválasztása egymást nem befolyásolja (nincs rokonsági kapcsolat). Nem tekinthetők független megfigyeléseknek ha ugyanazt a vizsgálatot ugyanazokban az egyénekben megismételjük és ezeket különálló mintáknak tekintjük (a kettőt összevonjuk)

  13. A lineáris (Pearson) korrelációs koefficiens kiszámíthatóságának feltételei II. • Az x és y értékeknek is függetleneknek kell lenni egymástól (l. a HCV RNS változási példát fent). • Ha az x változó szisztematikusan változik, pl. idő, koncentráció vagy dózis) akkor ne korrelációt, hanem lineáris regressziót kell számolni, bár ugyanazt az r és P értéket kapjuk, de a regresszióból több következtetés vonható le. • Mind az x, mind az y mintáknak normál eloszlást mutató populációból kell származniuk. Ha ez nem áll fenn, akkor nem paraméteres eljárást (Spearman korrelációs koefficiens) kell végeznünk.

  14. A lineáris (Pearson) korrelációs koefficiens kiszámíthatóságának feltételei III. • Az x és az y végig egy irányban kell változzon. Pl. az r-nek semmi értelme akkor, ha az x növekedésével egy darabig nő az y, de a további növelés után csökkenni kezd. • sohasem szabad két populációból származó mintát kombinálni, mert ez ál-szignifikáns korrelációt fog mutatni, noha sem az egyik, sem a másik mintában külön-külön nincs kapcsolat a két változó között.

  15. HOGYAN NEM SZABAD KORRELÁCIÓT SZÁMÍTANI?

  16. Összefüggés az almavirágok átmérője és az almák súlya között. Hipotetikus példa a rang-korrelációs eljárás elvének szemléltetésére.

  17. Pozitív lineáris korreláció a szérum log10triglicerid és log10HbA1C szintek között cukorbetegekben

  18. Negatív lineáris korreláció a szérum log10triglicerid és HDL-koleszterin szintek között cukorbetegekben

  19. Negatív korreláció a szérum log10 triglicerid és HDL-koleszterin szintek között cukorbetegekben. Számítás a nem paraméteres Spearman próbával

  20. A korrelációs számítás legfontosabb szabálya: a szignifikáns korreláció sem jelent ok-okozati kapcsolatot • Ha x és y között erős korreláció van, akkor az lehet azért, mert • 1. az y változásai okozzák az x változásait • 2. a x változásai okozzák az y változásait • 3. egy harmadik faktor mind az x-et, mind az y-t egy irányba (vagy ellenkező irányba) befolyásolja. Ez a leggyakoribb!!!

  21. A REGRESSZIÓ • A regresszió úgy mutatja meg két változó kapcsolatát, hogy egyben az egyik változó (függő változó) a másik változótól (független változó) való függésének mértékét is kifejezi. • lineáris és nem-lineáris regresszió • egyszerű és többszörös regresszió

  22. y Y változás X változás b (meredekség): y változás/x változás a x

  23. PÉLDA • Az allergének aktiválják a komplement rendszert az un. klasszikus reakcióúton át. Ennek elsô lépése a C1 makromolekula belsô, enzimatikus aktivációja. A második lépésben a C1 enzim (C1 eszteráz) egyik szubsztrátját, a C4-et C4b-vé és C4a-vá hasítja el, majd a C4b tovább bomlik és C4d keletkezik belőle. Egy speciális,monoklonális ellenanyagokkal működő kit lehetővé teszi a C4d szint mérést szérumban. Mi egy allergén (Parietaria judaica=falfű) különbözô dózisaival (0,05, 0,10, 0,20, 0,40 mg/ml szérum) inkubáltuk 37oC-on 60 percig egy vizsgált egyén szérumát és minden mintában megmértük a keletkezett C4d mennyiségét (µg/ml)

  24. Látható, hogy minél több allergént adtunk a szérumhoz, annál több C4d keletkezett. Kérdésünk a korrelációs számítással szemben, amikor csak azt kérdeztük volna, hogy kapcsolatban áll-e egymással az allergén dózisa és a keletkezett C4d mennyisége, most azt is tudni szeretnénk, hogy az allergén egy adott dózisa (x mg/ml) milyen mértékű (y µg/ml) C4d képzôdést indukál a szérumban. • Ha az x és az y között lineáris vagy ezt megközelítő összefüggés látszik (példánkban ez a helyzet), akkor a kérdésre a (egyszerű vagy egyszeres, simple) lineáris regresszió módszerével kaphatunk választ.

  25. A lineáris regressziós számítás lényege az, hogy egy olyan vonalat húzunk, amely a mérési pontoktól a lehető legkisebb távolságban van, ezeket a legjobban megközelíti (best fit regression line). Matematikailag ez azt jelenti, hogy minden más vonal esetében a mérési pontok függőleges távolsága négyzeteinek összege nagyobb volna.

  26. Tehát a vonal úgy készül, hogy egy képlet alapján kiszámolja a gép, de természetesen mi is kiszámolhatjuk a lineáris regressziós egyenes egyenletét (meredekség és metszési pont az y tengelyen) és ennek alapján ábrázoljuk az egyenest. • Az első és harmadik pont elég távol esik a regressziós egyenestől ahhoz, hogy a pontok és egyenes közötti függőleges távolságokat is ábrázoljuk. E távolságok négyzetének összege kell minimális legyen. A távolságokat reziduumnak (residual) nevezzük, ezek négyzetének összege a reziduumok varianciája, melynek négyzetgyöke a reziduumok SD-je. A regressziós egyenes az az egyenes, amelynél a reziduumok összegének az SD-je a legkisebb. Egyes programok ezt is kiszámítják

  27. A számítás segítségével meghatározhatjuk az egyenesek konfidencia intervallumát is, tehát azokat a határokat, amelyek közé azok a regressziós egyenesek esnének 95%-os valószínűséggel, amelyek más olyan kísérletekhez tartoznának, amelyekben ugyanezt az összefüggést vizsgálnánk

  28. A regressziós egyenes egyenlete

  29. példánkban

  30. A lineáris regressziós egyenes szignifikanciája: • A null-hipotézis: nem áll fenn lineáris összefüggés a parietária allergén dózisa és a képződött C4d mennyisége között. Ha ez igaz, akkor a regressziós egyenes az x tengellyel párhuzamos lenne, tehát a meredeksége: 0. A P érték azt jelenti, hogy ha a null-hipotézis igaz, akkor mi annak a valószínűsége, hogy véletlenül a 0-tól az észlelt mértékben eltérő, vagy ennél még nagyobb meredekséget észlelnénk. Ha a P érték kicsi, akkor valószínűtlen, hogy az észlelt összefüggés véletlen koincidencia eredménye lenne. Példánkban a P érték: 0.0249, tehát kevesebb, mint 2,5% annak a valószínűsége, hogy az allergén dózisától nem függ a szérumban képzôdő C4d mennyisége.

  31. A lineáris regresszió elvégezhetőségének feltételei • Az x és az y értékek nem felcserélhetők, az x értékek alapján szeretnénk előre jelezni az y értékeket, fordítva ez nem lehetséges, mert a kísérletben az x-et variáljuk, vagy időben esetleg logikailag megelőzi az y-t (pl. előbb adtuk hozzá a szérumhoz az allergént és csak ezután képződött a C4d) • Az ábrázolás szerint az x és y értékek között lineáris összefüggés áll fenn. Ennek eldöntésre a legtöbb program lehetővé teszi a reziduumok ábrázolását is, ennek elemzése elősegítheti annak az eldöntését, hogy valóban fennáll-e az x és y között a lineáris viszony.

More Related