1 / 15

5. MDS and Facet Theory

5. MDS and Facet Theory. 2010-01-26 숭실대학교 기계학습 연구실 봉성용 sybong@ml.ssu.ac.kr. Facets and Regions in MDS Space. Regions Facet theory 의 framework Facet Domain 의 element 를 분류 할 때 사용되는 계획 Elements of Facet Theory. Facets and Regions in MDS Space. Facet Theory and Regions in MDS Spaces.

kateb
Download Presentation

5. MDS and Facet Theory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 5. MDS and Facet Theory 2010-01-26 숭실대학교 기계학습 연구실 봉성용 sybong@ml.ssu.ac.kr

  2. Facets and Regions in MDS Space • Regions • Facet theory의 framework • Facet • Domain의 element를 분류 할 때 사용되는 계획 • Elements of Facet Theory

  3. Facets and Regions in MDS Space Facet Theory and Regions in MDS Spaces

  4. Facets and Regions in MDS Space • 3D Cylindrex • Facet Theory and Regions in MDS Spaces • Schematic radex

  5. Regional Laws • Regional law의의미 • Data의 규칙을 반영한다 • Radex의 중앙은 복잡하고, 명확한 특징 갖는 item으로 연관성이 높다

  6. Multiple Facetizations • Facet 추가로 alternative 추가를 제공 • Work value item • H(erzberg) = {h =hygiene, m=motivators} • M(aslow) = {p=physiological, s=security, b=belongingness, r=recognition, a=self-actualization } • A(lderfer) = {e=existence, r=relations, g=growth}; • E(lizur) = {i=instrumental-material, k=cognitive, a=affective-social} • R(osenberg) = {e=extrinsic, i=intrinsic, s=social} • L(evy-Guttman)= {i=independent of individual performance, g=depends on group performance, n=not performance dependent} • B(org-Elizur) = {1=depends much on individual performance, 2=depends more on individual performance than on system, 3=depends both on individual performance and on system, 4=depends on system only}

  7. Multiple Facetizations • Radexpartitionings of 13 work value items • Solid radial line : M(aslow) • Dashed radial lines : R(osenberg) • Concentric ellipses : L(levy-Guttman)

  8. Partitioning MDS Spaces Using Facet Diagrams • MDS space에서 Facet diagram 을 이용하여 Partitioning • Facetdiagram • MDS space에서 point를 하위 공간으로 분활 • 2차원 면으로 나타냄 • 각 point에 label

  9. Partitioning MDS Spaces Using Facet Diagrams • 2개의 축으로 표현 • Positivity로 partitioning 24개의 type이 존재

  10. Partitioning MDS Spaces Using Facet Diagrams • 에러를 최소화 하기 위한 modular partitioning 3개의 Error를 가지고 있는 axial partitioning

  11. Partitioning MDS Spaces Using Facet Diagrams 축 3개와 4개의 면으로 이루어진 4D MDS space Number (without error)와 variability(two error) 추가

  12. Prototypical Roles of Facets • 3가지 prototypical roles • Multiplex • Duplex : two axial facets • Triplex : three axial facets

  13. Criteria for Choosing Regions • Regions의 pattern을 의미가 통하도록 분활 • Partitioning하기 위해서 • 확실한 사항을 사용 • 너무 특정한 샘플을 사용하지 않는다 • Simple Partitioning – (Surely) • 축 or 각진 모형 • Circumplex의 중심 부근 • Computerized method for partitioning facet diagrams in three ways – (Shye) • In an axial way • In a modular way • In a polar way

  14. Regions and Theory Construction • 정의와 data는 밀접하게 연관성 있는 hypotheses의 특정한 point 뿐 아니라 관련된 각각의 point와 상호작용하는 partnership이다 • 반복 실험(관련성과 경험)으로 Regional의규칙을 규명하는데 충분치 않다 • Regional pattern 예측 요구는 facet에 framework를 명확하게 정의 하는 역할을 한다

  15. Regions, Clusters and Factors • Clusters • Regions • Factor analysis • 변수들 간의 상관 관계를 고려하여 서로 유사한 변수들 끼리 묶어주는 방법

More Related