640 likes | 801 Views
Using the Inner Oort Cloud to Explore the History of the Earth and Sun. Nathan Kaib Advisor: Tom Quinn Collaborators: Andrew Becker, Lynne Jones University of Washington. Outline. Background Outer Solar System primer Inner vs. outer Oort Cloud Observations
E N D
Using the Inner Oort Cloud to Explore the History of the Earth and Sun Nathan Kaib Advisor: Tom Quinn Collaborators: Andrew Becker, Lynne Jones University of Washington
Outline Background • Outer Solar System primer • Inner vs. outer Oort Cloud Observations • Candidate inner Oort Cloud objects • Prospects from future surveys What We Can Learn • Oort Cloud formation and the Sun’s birth environment • Comet showers and mass extinctions
Outline Background • Outer Solar System primer • Inner vs. outer Oort Cloud Observations • Candidate inner Oort Cloud objects • Prospects from future surveys What We Can Learn • Oort Cloud formation and the Sun’s birth environment • Comet showers and mass extinctions
Classical Kuiper Belt (pre ~1995) • Leftover primordial disk • Low inclination • Low eccentricity
Scattered Disk • Objects that have had Neptune encounter • Inclinations inflated • - ( 0 – ~20o) • Higher eccentricities • (0.1 – ~1) • Source of short-period comets
Outer Solar System Oort Cloud extends to ~200,000 AU (1 pc)
The tide of the Milky Way also perturbs the Oort Cloud (COBE, NASA)
About 2x as powerful as stellar passages (Heisler & Tremaine 1986) Galactic tide causes perihelion and inclination to oscillate
Outline Background • Outer Solar System primer • Inner vs. outer Oort Cloud Observations • Candidate inner Oort Cloud objects • Prospects from future surveys What We Can Learn • Oort Cloud formation and the Sun’s birth environment • Comet showers and mass extinctions
25000 AU Jupiter-Saturn Barrier • Comets must have large perihelion shift to make it past Jupiter/Saturn in one orbital period • Only weakly bound comets will have large perihelion changes • Jupiter/Saturn shield inner solar system from inner 20,000 AU of Oort Cloud
25000 AU a > 1,000 AU ~ LPCs and Oort Cloud • LPCs near Earth only constrain outer Oort Cloud • LPCs beyond Saturn will sample inner Oort Cloud as well a > 20,000 AU
Outline Background • Outer Solar System primer • Inner vs. outer Oort Cloud Observations • Candidate inner Oort Cloud objects • Prospects from future surveys What We Can Learn • Oort Cloud formation and the Sun’s birth environment • Comet showers and mass extinctions
SDSS-II SN Survey Observations 2006 SQ372
SDSS-II SN Survey Observations 2006 SQ372
SDSS-II SN Survey Observations 2006 SQ372
SDSS-II SN Survey Observations 2006 SQ372
a = 796 AU q = 24.2 AU i = 19.5° Orbit Summary
Orbital Evolution Current orbit is transient - unstable after ~200 Myrs!
x semimajor axis perihelion Two Different Origin Scenarios1. Scattered Disk
x semimajor axis perihelion Two Different Origin Scenarios2. Oort Cloud OC SD
Simulations Oort Cloud • 106 particles • Orbit distributions based on Kaib & Quinn (2008) sims • Run for 1.4 Gyrs Scattered Disk • 2,500 particles • Orbit distributions based on SDO observations • Run for 4.5 Gyrs Non-symplectic variable timestep integrator based on SWIFT (Levison & Duncan, 1994; Kaib & Quinn, 2008)
Orbital Residence Map (OC) 10° < i < 30° X 2006 SQ372
Calibrating Simulation Output • For scattered disk simulation, assume: • NJFCs = 250 • Dormant:Active Comet ratio = 2 (Morbidelli & Fernandez, 2006) • For Oort Cloud simulation, assume: • LPC flux (q < 5 AU) = 1.5 comets/yr (Neslusan, 2007) • Inner:Outer OC population ratio = 3 (Kaib & Quinn, 2008)
Orbital Residence Map (OC) 10° < i < 30° X 2006 SQ372
POC/PSD Map 2000 OO67 SQ372 2006 SQ372 (Kaib et al., 2009) For 2006 SQ372: POC/PSD 16
Origin Implications • 2006 SQ372 is at least 16 times more likely to come from the Oort Cloud compared to the Scattered Disk • Which region of the Oort Cloud?
Inner Oort Cloud Origin Semimajor axis drawdown time vs. Perihelion drift time Dq = -10 AU Ejection by Saturn Dq = 10 AU a is fixed
Inner Oort Cloud Origin Sampled by Known LPCs (~2.5%) tq ~ a-2 ta ~ 100 Myrs a < 800 AU 20 AU < q < 30 AU (Kaib et al., 2009)
2006 SQ372 Summary • 2006 SQ372 and 2000 OO67(Elliot et al. 2005) are first detected members of inner Oort Cloud population inside planetary region • Pan-STARRS, LSST will discover 100’s to 1000’s of similar bodies • Population statistics will constrain structure and population size of inner Oort Cloud
Outline Background • Outer Solar System primer • Inner vs. outer Oort Cloud Observations • Candidate inner Oort Cloud objects • Prospects from future surveys What We Can Learn • Oort Cloud formation and the Sun’s birth environment • Comet showers and mass extinctions
How did the Oort Cloud form? Pat Rawlings, NASA
Planetesimal Scattering q is ~fixed, but a undergoes random walk
~ 104 AU Inclination also changes If q > 40 AU then growth in a stops
Perihelion (AU) Semimajor axis (AU) t = 2 Gyrs (Kaib & Quinn, 2008)
Perihelion (AU) Semimajor axis (AU) Sedna x OC Buffy x 2004 VN112 x x 2000 CR105 KB SD LPCs t = 2 Gyrs (Kaib & Quinn, 2008)
~ 103 AU Extended Scattered Disk • If q was always big, orbit should be circular, low i • a is too small for current external forces to shift q
Early Strong Perturbations Embedded Cluster Environment (Brasser et al., 2006) Open Cluster Environment (Kaib & Quinn, 2008)
med min Reproducing ESDOs Brasser et al. (2006) Median OC Distance (AU) Kaib & Quinn (2008)
Birthplace Consequences Inner OC: a < 20,000 AU Outer OC: a > 20,000 AU Kaib & Quinn (2008) • Sun’s birth environment controls inner Oort Cloud enrichment and radial distribution
Outline Background • Outer Solar System primer • Inner vs. outer Oort Cloud Observations • Candidate inner Oort Cloud objects • Prospects from future surveys What We Can Learn • Oort Cloud formation and the Sun’s birth environment • Comet showers and mass extinctions
25000 AU Comet Showers • Rare close stellar encounters (< 5000 AU) are able to perturb more tightly bound orbits • The Earth is temporarily exposed to the entire Oort Cloud