1 / 13

Consumption, Production, Welfare B: Welfare Comparisons in Consumer Behaviour

Consumption, Production, Welfare B: Welfare Comparisons in Consumer Behaviour. Univ. Prof. dr. Maarten Janssen University of Vienna Winter semester 2013. Relationship h( p,u ) and x( p,w ). Normal goods. Inferior goods. p. p. h( p,u ). x ( p,w ). x( p,w ). h( p,u ). Q. Q.

katoka
Download Presentation

Consumption, Production, Welfare B: Welfare Comparisons in Consumer Behaviour

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Consumption, Production, Welfare B:Welfare Comparisons in Consumer Behaviour Univ. Prof. dr. Maarten Janssen University of Vienna Winter semester 2013

  2. Relationship h(p,u) and x(p,w) Normal goods Inferior goods p p h(p,u) x(p,w) x(p,w) h(p,u) Q Q

  3. Welfare evaluations • How do consumers appreciate price changes. A pure economist‘s response would be to say: v(p‘,w) – v(p,w) is appropriate measure • But how big is this? • Money-metric measure should come in handy: e(p,v(p,w)) is how much money you need to be able to reach utility level v(p,w) when price are p • How much did consumer becomes better off because of a price change from p to p‘?: e(p,v(p‘,w)) - e(p,v(p,w)) • Depends on choice of p. Two obvious choices: • P is old price p: Equivalent variation. How much money should you comepnsate to consumer to make him just willing to stay with old prices? • P is new price p: Compensating variation. How much money should you comepnsate to consumer to make him just willing to accept new prices?

  4. Equivalent Variation: graphically Y • Suppose price of good y is normalized to 1 • Shift from A to B is due to price decrease in price of x • How much money should consumer get to stay with old prices? EV measured on vertical axis • Can you draw CV systematically? EV A B X

  5. Equivalent variation: more detail for this price decrease of x Mathematically Graphically • EV = e(p,u’) – e(p,u) = e(p,u’) – w = e(p,u’) – e(p’,u’) = p EV p’ h(p,u’) X

  6. Compensating variation when x is a normal good Mathematically Graphically • CV = e(p’,u’) – e(p’,u) = w - e(p’,u) = e(p,u) – e(p’,u) = • Relation with EV: is u higher than u’ or not? • With price decrease we are analyzing here u is smaller than u’ and so we have p CV EV p’ x(p,w) h(p,u’) h(p,u) X

  7. What measures consumer surplus? Interpretation Graphically • If we use consumer surplus as a measure of welfare change due to a price decrease, then we have figure on right • For normal goods this is smaller than EV and larger than CV (see previous slides) • It is equal to both if there are no income effects • Good exercise: try to depict EV, CV, CS with inferior goods p CS p’ x(p,w) X

  8. Further Applications I: Price Indices • Price indices are supposed to measure inflation. Inflation numbers are important in many ways, and are used in wage negotiations • Unions demand that nominal wages are at least corrected for inflation • If wages are adjusted in this way, are people just as well off as they are without inflation (and no nominal wage increase)? • Inflation calculation uses consumer goods basket: if at prices p consumer bought bundle x, and then prices increase to p´, then inflation is p´x/px

  9. Price Indices • Consumer has made choice under old prices (blue point) • If all prices rise (at different rates) there is new budget line (red line) • Inflation rate is calculated as ratio of red dotted line and red staight line (check) • If consumers’ wage would be compensated for inflation they would be better off! • Kind of Slutsky compensation • When would this conclusion not hold? Y X

  10. Further Applications II: Housing Prices • Consider an individual who just bought a house. After she bought the house, consider two scenarios: • All housing prices fall • All housing prices increase • In which situation is the consumer better off?

  11. Housing prices • Consumer has made choice under old price ratio (blue point) • If house prices rise (as he has already his house), he has other trade-off (red line) and can sell house and buy new with less square meters • Slutsky compensation • Consumer better off. • What about decrease in housing prices? Other goods Square meters

  12. Further Applications: Direct or indirect tax Y • If government wants to raise tax revenues, do consumers prefer indirect tax or lump-sum? • Indirect tax t such that. In Figuremovefrom A to B • Ifyouwouldkeepoldprices, youcouldhave a lump sumtaxequalto EV tomakeconsumer indifferent • How large should lump sumtaxT betorise same taxrevenueasindirecttax? • This budgetlinegoesthrough B atoldprices. • Consumer better off with lump sum T EV B A X

  13. Usingtheapparatusofconsumerbehaviour • If –EV > T consumerisbetteroff with lump sumtax. Equivalentto e(p’,u’) – e(p,u’) > = p +t h(p,u) Q

More Related