1 / 48

Kondo Physics from a Quantum Information Perspective

Kondo Physics from a Quantum Information Perspective. Pasquale Sodano International Institute of Physics, Natal, Brazil. Sougato Bose UCL (UK). Henrik Johannesson Gothenburg (Sweden). Abolfazl Bayat UCL (UK). References. An order parameter for impurity systems at quantum criticality

katy
Download Presentation

Kondo Physics from a Quantum Information Perspective

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kondo Physics from a Quantum Information Perspective Pasquale Sodano International Institute of Physics, Natal, Brazil

  2. Sougato Bose UCL (UK) Henrik Johannesson Gothenburg (Sweden) AbolfazlBayat UCL (UK)

  3. References • An order parameter for impurity systems at quantum criticality • A. Bayat, H. Johannesson, S. Bose, P. Sodano • To appear in Nature Communication. • Entanglement probe of two-impurity Kondo physics in a spin chain • A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) • Entanglement Routers Using Macroscopic Singlets • A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) • Negativity as the Entanglement Measure to Probe the Kondo Regime in the • Spin-Chain Kondo Model • A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) • Kondo Cloud Mediated Long Range Entanglement After Local • Quench in a Spin Chain • P. Sodano, A. Bayat, S. Bose • Phys. Rev. B 81, 100412(R) (2010)

  4. Contents of the Talk Negativity as an Entanglement Measure Single Kondo Impurity Model Application: Quantum Router Two Impurity Kondo model: Entanglement Two Impurity Kondo model: Entanglement Spectrum

  5. Entanglement of Mixed States Separable states: Entangled states: How to quantify entanglement for a general mixed state? There is not a unique entanglement measure

  6. Negativity Separable: Valid density matrix Entangled: Negativity:

  7. Gapped Systems Excited states Ground state The intrinsic length scale of the system impose an exponential decay

  8. Gapless Systems Continuum of excited states Ground state There is no length scale in the system so correlations decay algebraically

  9. Kondo Physics Despite the gapless nature of the Kondo system, we have a length scale in the model

  10. Realization of Kondo Effect Semiconductor quantum dots D. G. Gordon et al. Nature 391, 156 (1998). S.M. Cronenwett, Science 281, 540 (1998). Carbon nanotubes J. Nygard, et al. Nature 408, 342 (2000). M. Buitelaar, Phys. Rev. Lett. 88, 156801 (2002). Individual molecules J. Park, et al. Nature 417, 722 (2002). W. Liang, et al, Nature 417, 725–729 (2002).

  11. Kondo Spin Chain E. S. Sorensen et al., J. Stat. Mech., P08003 (2007)

  12. Entanglement as a Witness of the Cloud A B Impurity L

  13. Entanglement versus Length Entanglement decays exponentially with length

  14. Scaling B A Impurity L N-L-1 Kondo Regime: Dimer Regime:

  15. Scaling of the Kondo Cloud Kondo Phase: Dimer Phase:

  16. Application: Quantum Router Converting useless entanglement into useful one through quantum quench

  17. Simple Example

  18. Extended Singlet With tuning J’ we can generate a proper cloud which extends till the end of the chain

  19. Quench Dynamics

  20. Attainable Entanglement 1- Entanglement dynamics is very long lived and oscillatory 2- maximal entanglement attains a constant values for large chains 3- The optimal time which entanglement peaks is linear

  21. Distance Independence For simplicity take a symmetric composite:

  22. Optimal Quench

  23. Optimal Parameter

  24. Non-Kondo Singlets (Dimer Regime) Clouds are absent K: Kondo (J2=0) D: Dimer (J2=0.42)

  25. Asymmetric Chains

  26. Entanglement in Asymmetric Chains Symmetric geometry gives the best output

  27. Entanglement Router

  28. Two Impurity Kondo Model

  29. Two Impurity Kondo Model RKKY interaction

  30. Impurities Entanglement

  31. Entanglement of Impurities Entanglement can be used as the order parameter for differentiating phases

  32. Scaling at the Phase Transition The critical RKKY coupling scales just as Kondo temperature does

  33. Entropy of Impurities Triplet Identity Singlet

  34. Impurity-Block Entanglement

  35. Block-Block Entanglement

  36. 2nd Order Phase Transition

  37. Order Parameter for Two Impurity Kondo Model

  38. Order Parameter • Order parameter is: • 1- Observable • 2- Is zero in one phase and non-zero in the other • 3- Scales at criticality • Landau-Ginzburg paradigm: • 4- Order parameter is local • 5- Order parameter is associated with a symmetry breaking

  39. Entanglement Spectrum Entanglement spectrum:

  40. Entanglement Spectrum NA=NB=400 J’=0.4 NA=600, NB=200 J’=0.4

  41. Schmidt Gap Schmidt gap:

  42. Thermodynamic Behaviour J’=0.4 J’=0.5 In the thermodynamic limit Schmidt gap takes zero in the RKKY regime

  43. Diverging Derivative In the thermodynamic limit the first derivative of Schmidt gap diverges

  44. Diverging Kondo Length

  45. Finite Size Scaling

  46. Schmidt Gap as an Observable

  47. Summary Negativity is enough to determine the Kondo length and the scaling of the Kondo impurity problems. By tuning the Kondo cloud one can route distance independent entanglement between multiple users via a single bond quench. Negativity also captures the quantum phase transition in two impurity Kondo model. Schmidt gap, as an observable, shows scaling with the right exponents at the critical point of the two Impurity Kondo model.

  48. References • An order parameter for impurity systems at quantum criticality • A. Bayat, H. Johannesson, S. Bose, P. Sodano • To appear in Nature Communication. • Entanglement probe of two-impurity Kondo physics in a spin chain • A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) • Entanglement Routers Using Macroscopic Singlets • A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) • Negativity as the Entanglement Measure to Probe the Kondo Regime in the • Spin-Chain Kondo Model • A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) • Kondo Cloud Mediated Long Range Entanglement After Local • Quench in a Spin Chain • P. Sodano, A. Bayat, S. Bose • Phys. Rev. B 81, 100412(R) (2010)

More Related