1 / 39

VisualRank : Applying PageRank to Large-Scale Image Search

VisualRank : Applying PageRank to Large-Scale Image Search. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, NOVEMBER 2008. Yushi Jing, Member, IEEE Shumeet Baluja , Member, IEEE.

katy
Download Presentation

VisualRank : Applying PageRank to Large-Scale Image Search

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. VisualRank: Applying PageRank to Large-Scale Image Search IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, NOVEMBER 2008 Yushi Jing, Member, IEEE ShumeetBaluja, Member, IEEE [24] Y. Jing, S. Baluja, and H. Rowley, “Canonical Image Selection from the Web,” Proc. Sixth Int’l Conf. Image and Video Retrieval, pp. 280-287, 2007.

  2. Outline • Introduction • Similarity graph[24] • PageRank & VisualRank • Hashing • Experiments • Conclusion

  3. Outline • Introduction • Similarity graph[24] • PageRank & VisualRank • Hashing • Experiments • Conclusion

  4. Search for “d80” & “coca cola” by traditional search engine

  5. Introduction • Visual theme, ex: “coca cola” logo • CBIR:content-based image retrieval • Pure • Composite • “Visual-filter” via Probabilistic Graphical Models(PGMs)[7] • Compare: • Object category learner • image search engine [7] R. Fergus, P. Perona, and A. Zisserman, “A Visual Category Filter for Google Images,” Proc. Eighth European Conf. Computer Vision, pp. 242-256, 2004.

  6. Introduction

  7. Introduction • Combine[24] • pairwise visual similarity among images • nonvisual signals • VisualRank • Based on PageRank • Large number of queries & images • Goal • More accurate search ranking

  8. introducton

  9. Outline • Introduction • Similarity graph[24] • PageRank & VisualRank • Hashing • Experiments • Conclusion

  10. Features generation • Local descriptor • SIFT&compare[29] [29] K. Mikolajczyk and C. Schmid, “A Performance Evaluation of Local Descriptors,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615-1630, Oct. 2005.

  11. Similarity graph • pairwise

  12. Similarity graph • Top 1000results of “Mona-lisa”

  13. Outline • Introduction • Similarity graph[24] • PageRank & VisualRank • Hashing • Experiments • Conclusion

  14. PageRank • Conception • Vote • eigenvector centrality A B D C PR(A) = PR(B) + PR(C) + PR(D)

  15. PageRank A B C D

  16. PageRank q=0.15 Random walk

  17. PageRank • Markov matrix

  18. VisualRank usually d>0.8

  19. Link spam • Well connected image V.S. VisualRank, “Nemo”

  20. Outline • Introduction • Similarity graph[24] • PageRank & VisualRank • Hashing • Experiments • Conclusion

  21. Matching • Precluster • “Paris”, “Eiffel Tower”, and “Arc de Triomphe” • Top-N, and compute VisualRank • Hashing • Locality Sensitive Hashing (LSH) • Feature descriptor as the key

  22. Locality Sensitive Hashing (LSH) • An approximate k-NN technique • Hash function: • a is d-dimensional random vector • b is real number from range • W defines the quantization of the features • V is the original feature vector

  23. Flow(1/3) • Resize 500*500 pix, 1000 web images 3000,000 to 700,000 feature vectores • L hash table H=H1, H2,…,HL, each with K hash functions, L=40, W=100, K=3

  24. Flow(2/3) • Matched descriptor • Have same key more than C=3 hash table • Hough Transform

  25. Flow(3/3) • Similarity • Matched images • More than 3 features • no. of matches divide by their avg. number of local features • Given similarity matrix S, and use VisualRank

  26. Outline • Introduction • Similarity graph[24] • PageRank & VisualRank • Hashing • Experiments • Conclusion

  27. Experiments • 2,000 most popular product queries on Google, ex: “ipod”, “Xbox” • the top 1,000 search results each query in July 2007 Google • Filter • Fewer than 5% images at least one connection • Remaining 1,000 queries

  28. Experiment 1 • Evaluate • “irrelevancy” of our ranking • Mixed Top 10 VisualRank & top 10 googleRemove duplicates and ask “which are least relevant?” • Ask 150 evaluators, randomly 50 queries

  29. Experiment 2 • VisualRankbias, • pT=VjT=[1/m, …, 1/m, 0, …, 0] • HeuristicRank– a pure CBIR system j

  30. Experiment 3 • Collected 40 top images each click numbers from google • Compare • Sum of VisualRank top 20 click numbers • Sum of default ranking top 20 click numbers • VisualRank exceeds 17.5% than default Google ranking

  31. Landmarks • 80 common landmark, ex: “Eiffel Tower,”“Big Ben,” “Coliseum,” and “Lincoln Memorial.”

  32. Outline • Introduction • Similarity graph[24] • PageRank & VisualRank • Hashing • Experiments • Conclusion

  33. Conclusion • VisualRank applying PageRank conception and combined • Default Google ranking • similarity graph between images • VisualRank can outperform the default Google on the vast majority of queries • Reduce the number of irrelevant images efficiently

More Related