1 / 34

Local Error-Detection and Error-correction

Local Error-Detection and Error-correction. Madhu Sudan MIT. k. k. k. k. k. (. ). (. (. (. ). ). ). d. d. d. d. d. d. d. f. f. 9. 9. h. ±. G. F. G. E. G. C. §. C. §. §. §. §. I. E. E. §. C. §. §. §. §. §. E. E.

kaylal
Download Presentation

Local Error-Detection and Error-correction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Local Error-Detection and Error-correction Madhu Sudan MIT Coding & Sublinear time

  2. k k k k k ( ) ( ( ( ) ) ) d d d d d d d f f 9 9 h ± G F G E G C § C § § § § I E E § C § § § § § E E i i i i n n n n i i i i i n i n i i µ · t t t t t t 2 2 2 2 2 2 x v ² e - n o v v : x e e n n e x x a n c o ; a m s m s p e e o u a c c c g e e a e e m e m m : a s s m ; n x m z e m s m x ² ! = ! = , , , . . . . . ; . . k ( ( ( ) ) ) ( = ( ) ( ( ( ) ) ) ) ± k ± d d ± l d d G E R C § C E E i i i i · t t 2 v e n m m x p r n o c v o m e p u e n o r m m m a x z e ² s a n c e = = ; , , ; . . . Algorithmic Problems in Coding Theory • Code: • Encoding: • Error-detection ( Testing): • Error-correction (Decoding): Coding & Sublinear time

  3. l x - o r a c e 0 ( ) f k x ( ( f ) ) g f g i f f k n i j 0 1 0 1 x o x : x n ! j ; ; ; 0 ( ) h f ¼ w e r e x x x i f Sublinear time algorithmics • Given can it be “computed” in time? • Answer 1: Clearly NO, since that is the time it takes to even read the input/write the output • Answer 2: YES, if we are willing to • Present input implicitly (by an oracle). • Represent output implicitly • Compute function on approximation to input. Extends to computing relations as well. Coding & Sublinear time

  4. Sub-linear time algorithms • Initiated in late eighties in context of • Program checking • Interactive Proofs/PCPs • Now successful in many more contexts • Property testing/Graph-theoretic algorithms • Sorting/Searching • Statistics/Entropy computations • (High-dim.) Computational geometry • Many initial results are coding-theoretic! Coding & Sublinear time

  5. Sub-linear time algorithms & Coding • Encoding: Not reasonable to expect in sub-linear time. • Testing? Decoding? – Can be done in sublinear time. • In fact many initial results do so! • Codes that admit efficient … • … testing: Locally Testable Codes (LTCs) • … decoding: Locally Decodable Codes (LDCs). Coding & Sublinear time

  6. Rest of this talk • Definitions of LDCs and LTCs • Quick description of known results • Some basic constructions • (Time permitting) Yekhanin’s construction of LDCs. Coding & Sublinear time

  7. Definitions Coding & Sublinear time

  8. n k ( ) ( ( ) ( ) = ) h f d ± ? d h l l d d f b l W C D § § C M L D i n i i i i i 2 t t t t > : a r e a ² s q n s r q a n ² - o m o c g p a o s y n e o e n e c s o o o a w e ! w ; [ ] = f 9 d d l f ` l d k d D D i i i i 2 3 t t t t t t t t 2 r a e n p e o c r o o u a e p r u s s s o m u w g p v p o e n a c o e e a w s o r s i . . . . . . ( ( ) ) ( ) = d l 9 ± ± C C 2 · · t a n o r a c e w s m w m ² . . ; , Locally Decodable Code Code: Coding & Sublinear time

  9. n ( ( ( ) ) ) ( ) ` ` l l d l l d l d d b d l d f 8 b l f 9 f d C D C § D D i i i i i i i i n i j t t t t 2 s q s ² ² r - e a - o c s s a - q y n e c o s r a - a n e c e o o m a p w o e s o n s o e c o w e r s w ; ; ; ; , . . [ ] ( ) [ ] ( ) = # d d k d d ` ± d l l ` C i i i j 2 3 · t t t t t t t t 2 2 2 g v c e a o n n e w o o u r p s u a c n s m s w a p n w a o c r a e c a s e ² w s s a m o s j i . . . . ; . . . . ( ( ) ) l l f ± C i i · t m m a r e a m e s s a g e s s a s y n g w m ² ` j 1 ; : : : ; ; Locally List-Decodable Code Code: Coding & Sublinear time

  10. History of definitions • Constructions predate formal definitions • [Goldreich-Levin ’89]. • [Beaver-Feigenbaum ’90, Lipton ’91]. • [Blum-Luby-Rubinfeld ’90]. • Hints at definition (in particular, interpretation in the context of error-correcting codes): [Babai-Fortnow-Levin-Szegedy ’91]. • Formal definitions • [S.-Trevisan-Vadhan ’99] (local list-decoding). • [Katz-Trevisan ’00] Coding & Sublinear time

  11. n ( ( ) ) d d l l b l C T § L T n i i i µ t t r e a s q s n q r ² a n - o o c m a p y o s e s o n a s : e w ; f 9 f T I T C i 1 t t t 2 ² e s w e r s a c c e p s w p . . . . . = f f f h I C i j 1 2 ¸ t t ² w s ² - a r r o m e n r e e c s w p , . . .  Locally Testable Codes Code: “Weak” definition: hinted at in [BFLS], explicit in [RS’96, Arora’94, Spielman’94, FS’95]. Coding & Sublinear time

  12. n ( ( ) ) d d l l b l T C § L T n i i i µ t t r e a s q s n q r ² a n - o o c m a p y o s e s o n a s : e w ; f 9 f T I T C i 1 t t t 2 ² e s w e r s a c c e p s w p . . . . . F § n 2 ² o r e v e r y w , ( ( ) ) ± T ­ C j ¸ t r e e c s w p w . . ; . Strong Locally Testable Codes Code: “Strong” Definition: [Goldreich-S. ’02] Coding & Sublinear time

  13. Motivations Coding & Sublinear time

  14. N ( ( ) ) l l d d f h f L A C i i i i i t t t t t t t t t l l l d d b l d f S C § N i n 2 µ f g ¼ ² ² b d f o c e a C r n a e c e o n n e g r p r e a c a o n n : c o m o p m u p u e c e x c x o r w e v e o r y u § x r e - i i n 0 1 ) t ² u p p o s e s o c a y - e c o a e c o e o r 2 = ² c c a n e v e w e a s u n c o n c : ! , . ; . ( 0 ) 0 [ ] l d f d l L I H R B F P i i i i ( t t t t t t h l l l d d b f h d d F i t t t o v e n a e c n a g n x c o m p e u a e s c x o n o s r a m n c o e s x n g e a e s a v e r r v a a g e e - u r e r a s s u m e c a n o c a y e c o e s o e c o e w o r . . , , [ ] [ ] f l l I R C G K S L S T V i i i i ) t t t t t t d b f h j i t t t t c n a s o e r c m o a m p o n e x e y r o e v w a o r s - c a s e p o n a n n o u s s o e m e s s a g e . . , . Motivations for Local decoding Coding & Sublinear time

  15. Motivation for Local-testing • No generic applications known. • However, • Interesting phenomenon on its own. • Intangible connection to Probabilistically Checkable Proofs (PCPs). • Potentially good approach to understanding limitations of PCPs (though all resulting work has led to improvements). Coding & Sublinear time

  16. Contrast between decoding and testing • Decoding: Property of words near codewords. • Testing: Property of words far from code. • Decoding: • Motivations happy with n = quasi-poly(k), and q = poly log n. • Lower bounds show q = O(1) and n = nearly-linear(k) impossible. • Testing: Better tradeoffs possible! Likely more useful in practice. • Even conceivable: n = O(k) with q = O(1)? Coding & Sublinear time

  17. Some LDCs and LTCs Coding & Sublinear time

  18. ( = ) j j = j j k l ± f f d l l ± f l l F F F F F P P m i i m m i m i ¸ t t t t t t ¼ e c o v a e u a c e m o n n s s o o n e g o n a m - v o a r a e p o y n o m a = , , , . . ¯ ¯ l d F i t o v e r n e e P Codes via Multivariate Polynomials Message: Encoding: Parameters: (Reed Muller code) Coding & Sublinear time

  19. k f f b l h d l h f d f f d d V P i i i i i i i i i t t t t t t t t t t t t t m e - c r v a y r s u a e s r p e p a s o c r e y c n o e r m o u a o g s o p p a o c e e n g r s e x e o o r e e n g s r e e r r e e c s e o . , 0 ( ) d d d d l ± b b l l S i i i i t < m a n a m e m e c c o - o m p e m o e x n a s y u n s e p a s c u e s p a c e s p o y n o m a . . . f d t o e g r e e 0 j j ( ) . l l F Q T i i m t u e r y c o m p e x y q ; m e p o y q = = . 0 b l ! i ¿ m m s u n e a r ) Basic insight to locality • Local Decoding: • Local Testing: Coding & Sublinear time

  20. ( ) k l k c ¢ o g = . = ( ) = ( ) l 1 1 1 ¡ ( ) ( ) ( ) l l l l d d b l b b h l l h h h k d k k L L L L T D D i i i i i i i i i i i q p o y q ² 3 t t t t t t t t t o o o o c c c c a a a a y e e e s q c c o o a w a a y n w y y w w e x p n q e x a p n n e x p = = = = ~ ( ) ( ) d k O O 1 q a n n = = Summary of Constructions • Polynomial Codes: (Locally decodable and testable) • Polynomial Codes + Composition/Concatenation: • Codes based on “Algebraic Designs” [Yekhanin] Coding & Sublinear time

  21. [Yekhanin ’07]’s LDCs Coding & Sublinear time

  22. ( ( ( ( ) ) ) ) ( ) l l l l l k T L L S S £ i y m m a a p r r a a g g c e e a a n s w e r m = j ( j j j ) l f d d k f b ? ? S H S S A S T T T T i t \ \ o s w a a u r g n e e o c v c e a o n n n o m e k k i i i j 1 1 ; : : : ; , ; : : . . : ; . f g S T 1 µ m i i ; ; : : : ; . Recall: Combinatorial Designs • Families of Sets: • Restrictions on Intersections: • E.g., • Basic Question: i vs. i: i vs. j: Coding & Sublinear time

  23. j j ¡ ¢ S 1 ¡ ( ) m l d l d ! B A S i i i p i t t p p a s s m m c a o - p s - e p m s m r e g s m n g e n » h h h h i i i i l 6 6 k b ? H S 0 0 0 0 1 ; ¡ 2 3 u p u u u u o w v v v v u a r v g e c a n v e = = = k k i i i i i i j j 1 1 ; : : : ; ; ; ; ; , ; : : : ; . h ? C i i t a n w e a c e v e F m 2 u v i i ; . p [Yekhanin]’s Algebraic Designs • Families of Vectors: • Restrictions on Inner Products: • Basic Question: Coding & Sublinear time

  24. j j ¡ ¢ S 1 ¡ ( ) m l d l d ! B A S i i i p i t t p p a s s m m c a o - p s - e p m s m r e g s m n g e n » h h h h i i i i l 6 6 k b ? H S 0 0 0 0 1 ; ¡ 2 3 u p u u u u o w v v v v u a r v g e c a n v e = = = k k i i i i i i j j 1 1 ; : : : ; ; ; ; ; , ; : : : ; . h ? C i i t a n w e a c e v e F m 2 u v i i ; . p [Yekhanin]’s Algebraic Designs • Families of Vectors: • Restrictions on Inner Products: • Basic Question: Coding & Sublinear time

  25. = 1 1 1 ¡ ¡ ( ) ( ) ( ) k l 9 b d k f h k ¤ F F L L S A B S S p i i i i i p i m 1 2 · µ t t t q e e p m m m m m a a - : : g q e a s r c a q p c n - p n e c s e e g n x n e p s w p s o s v e c o r s n = ) = = ; ; . . . p p ( ) ( ) d b h k k b b F S L D C i i i i i i i m m t t t t t p p - q - u e e r s y g n w n a r y v e c o s r s m a n p p n g - s o p s ) ; p k b b L D C i i i m t t t q - q u e r y s m a p p n g s o p s ) . [Y’07] Algebraic designs and LDCs (Matches some of the early constructions) Coding & Sublinear time

  26. ( ( ) ( ) ) ¯ f l 9 b l l b d ¯ l f l ¤ f F D L O S S S S i i i i i i i i i i i 2 · µ t t t t t q e e p m n e n m o a - o n a w : : g o e q e q r s u a q q c v - a a p n e g c n e e n r e a s e s c p a n o s y o n n s c e = ; ; . . . p ( ) ( ) [ ] = ( ) 9 d l h k l h F F S i i i i m p 1 t t t ¡ 2 p a q - - s p e a s r s g e n p w o y n o m v e a c o r s x n x x s 2 ; . . p ¯ f ( ) j g d l d b h ¯ k b b l L D C S i i i i i i i m t t t t t 2 e a q - q g u e e n r e y r a e s y m a p p x n g s o s n p o n - r s v a ) . . [Y’07] Algebraic designs and LDCs Coding & Sublinear time

  27. = 7 1 7 ( ) ( ) ( ) f ( g ) l l l l b 9 b d l l k ! b f ¤ k b F S E L S L S D C S S S i i i i i i i i i i 3 3 2 1 2 7 1 2 4 8 1 6 3 2 6 4 · µ t t t t t m q e x p m a s m - m o q n - p u a a g - e e g r : a : y e p p g r e q a r - c a a e q c m s y ; p n a g n n p c p s e c n e e n e x g s s s p o s s o e x p s ) = = = ; ; ; ; ; . . ; ; ; . ; p ( ) d h k F S i i i m t t p - e s g n w v e c o r s n ; p k b b L D C i i i m t t t q - q u e r y s m a p p n g s o p s ) . [Y’07] Algebraic designs and LDCs Coding & Sublinear time

  28. 1 t t ¡ ( ) ( ) f g h l 9 9 b l l f b ¤ f F F T L L L S S S L D C S S i i i i i 2 3 4 3 2 1 1 2 4 2 · µ t t t ¡ q e e e p m m m e o m m m r e a a a m - a : : : : g p e q m - r q a u u q c e r p p n y c c e a n e s v s e p o s s u g r o u p o = = ) = p ; ; . . ; ; ; . : : : ; p j j S 0 0 0 0 0 0 0 1 ( ) ( ) ( ) 9 l d b k d b l l h k f l k h b F S S i i i i i i i i i i m 3 t t t t t t : m s p a p - a p - p g n e g e s r g a - n c e a w s s g y n o n o e c x e v p e e n c g o r s n m s ) » ; ; . . . p k b b L D C i i i m t t t q - q u e r y s m a p p n g s o p s ) . [Y’07] Algebraic designs and LDCs Coding & Sublinear time

  29. Proofs? • Disclaimer: Proof of Lemma 2, Lemma 3 too long to fit here. (Many context switches, but elementary.) • Will only attempt to show Lemmas 1 and 4. Coding & Sublinear time

  30. G i v e n u u ; v v k k 1 1 ; : : : ; ; : : : ; 2 3 u x i . . . 6 7 G 1 ¢ ¢ ¢ ¢ ¢ ¢ = h i 6 7 u x i ; 4 5 . . . Basic designs and LDCs Coding & Sublinear time

  31. ( ) 2 1 + + + ¡ y m y y v p v y m v k i i i 1 ; : : : ; h i 6 0 t s u y = i . . ; 2 3 . . . 6 7 1 ¢ ¢ ¢ ¢ ¢ ¢ h i 6 7 u x i ; 4 5 . . . Basic designs and LDCs message … codeword … Report parity of locations Coding & Sublinear time

  32. h h i t t o e r r o w r o w s l l 1 ¡ - - p a o n e o s n e s . . 2 3 . . 2 3 . 6 7 . ? = . 6 7 . 4 5 6 7 1 . ¢ ¢ ¢ ¢ ¢ ¢ h i . 6 7 u x i . ; 4 5 . . . Basic designs and LDCs + + + … codeword Coding & Sublinear time

  33. h i h = j j i j j f g k h h f b h l f f l f f U T S ~ ~ i i i i i i i j i i 0 1 1 1 t t t t t t t t t t t t t ¡ ¡ \ 2 v u u a s e e v u s c c e u a a v o r v r a a c s c ; a z e s p e e r r a u s e s x o a c v c v c e v v ; e e y c e c n p o o s r r o r o o p c o s o e w m e r p s e o m e u n p v o s e $ = = = = = i i i i i i i i i j i i ; ; ; ; . ; : : : ; ; . . Proof of Lemma 4 • Construction of Basic p-designs: • Construction of (p,S)-designs for S multiplicative: Coding & Sublinear time

  34. Conclusions • Local algorithms in error-detection/correction lead to interesting new questions. • Non-trivial progress so far. • Limits largely unknown • O(1)-query LDCs must have R(C) = 0 [Katz-Trevisan] Coding & Sublinear time

More Related