1 / 10

STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE

STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, 277 11 Neratovice, tel.: 315 682 314, IČO: 683 834 95, IZO: 110 450 639 Ředitelství školy: Spojovací 632, 277 11 Neratovice tel.: 315 663 115, fax 315 684145, e-mail: mhrejsova@sosasou.cz, www.sosasouneratovice.cz.

keahi
Download Presentation

STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, 277 11 Neratovice, tel.: 315 682 314, IČO: 683 834 95, IZO: 110 450 639 Ředitelství školy: Spojovací 632, 277 11 Neratovice tel.: 315 663 115, fax 315 684145, e-mail: mhrejsova@sosasou.cz, www.sosasouneratovice.cz Registrační číslo projektu:CZ.1.07/1.5.00/34.0185 Název projektu: Moderní škola 21. století Zařazení materiálu: Šablona: IV/2 Stupeň a typ vzdělávání: střední odborné Vzdělávací oblast: všeobecné matematické vzdělávání Vzdělávací obor: veřejnosprávní činnost Vyučovací předmět: matematika Tematický okruh: exponenciální nerovnice Sada: 2 Číslo DUM: 20 Ověření materiálu ve výuce: Datum ověření: 14. 5. 2013 Ročník: VS3 Ověřující učitel: Mgr. Květa Holečková

  2. Exponenciální rovnice jsou rovnice, ve kterých se vyskytují mocniny s neznámou v exponentu. Pro všechna reálná čísla x, y a pro každé kladné reálné číslo a různé od 1 platí, že je-li ax = ay, pak je x = y. Zároveň platí, že exponenciální funkce y = ax je pro y > 1 rostoucí a pro klesající.

  3. Řešte rovnici 55-x = 53x-3 Použijeme výše uvedenou větu: mají-li být mocniny o stejném základu sobě rovny, musí se sobě rovnat exponenty. Hledáme tedy všechna čísla z množiny R, pro která platí: 5 - x = 3x - 3

  4. Řešíme získanou lineární rovnici: -4x = -8 x = 2

  5. Provedeme zkoušku dosazením do dané rovnice: L(2) = 55-2 = 125 P(2) = 53*2-5 = 125 L(2) = P(2) Množina všech řešení dané rovnice je {2}

  6. Příklad 2

  7. Obě strany rovnice upravíme tak, aby byly vyjádřeny ve tvaru mocnin o stejném základu: 3-(5-2u) = 81 3-(5-2u) = 34

  8. Použijeme větu viz výše a dostaneme -(5 - 2u) = 4 • Dále postupujeme: • 2u = 9 • u = 4,5

  9. Zkouška

More Related