1 / 16

GGSS Kot baba deep singh (G) Amritsar

swNJw guxnKMf k`F ky guxnKMfIkrx, pdW dw sQwnAMqrx krx auprMq smUhIkrx duAwrw guxnKMfIkrx, srbMgsmqWvw dI vrqo duAwrw guxnKMfIkrx :. GGSS Kot baba deep singh (G) Amritsar. Class -7th. Subject - Math. Teacher Name- Sonia Nahar. pUrv igAwn.

kedem
Download Presentation

GGSS Kot baba deep singh (G) Amritsar

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. swNJw guxnKMf k`F ky guxnKMfIkrx, pdW dw sQwnAMqrx krx auprMq smUhIkrx duAwrw guxnKMfIkrx, srbMgsmqWvw dI vrqo duAwrw guxnKMfIkrx : GGSS Kotbaba deep singh(G) Amritsar Class -7th Subject - Math Teacher Name- Sonia Nahar

  2. pUrv igAwn guxnKMf k`F ky guxnKMfIkrx bwry jwxU huMdy hn[ pdW dw sQwnAMqrx krx auprMq smUhIkrx duAwrw guxnKMfIkrx ivDI bwry jwxkwrI hwisl krnw[ pdW dw sQwnAMqrx krx auprMq smUhIkrx duAwrw guxnKMfIkrx bwry jwxnw[ srbMgsmqWvw dI vrqo duAwrw guxnKMfIkrx ikvyN krnw

  3. swNJw guxnKMf k`F ky guxnKMfIkrx swNJw guxnKMf k`F ky guxnKMfIkrx nUM audwhrxwN nwl smJwieAW jwvygw [ audwhrx 1: 12x2y3+18x3y dw guxnKMfIkrx kro [

  4. h~l: id`qw igAw do pdI ivAMjk ie`k pdI 12x2y3Aqy18x3y dw joVPl hY[ 12x2y3 Aqy 18x3y dw m:s:v: pqw krn leI , AsI au`pr d`sy gey Awm vrqo vwly inXm dw pRXog krWgy[ies m:s:v: dI shwieqw nwl guxnKMf pqw kIqy jwxgy [

  5. pg 1: ie`k pdIAW dy guxWk 12=(2×2×3)Aqy 18=(2×3×3) hn[12Aqy 18 dw m:s:v.2×3=6hY[ [12Aqy18 dy swJy guxnKMf] dovy hI ie`k pdIAW iv`c Awaux vwlIAW A~Kr sMiKAwvW x Aqy y hn[ pg2:

  6. (1) 12x3y3 Aqy 18x3y iv`c x dy Gwq AMk kRmvwr 2 Aqy 3hn[2Aqy 3 iv`c 2 Cotw hY ies leI ,swnUM pRwpq huMdw hY x2 (@2) y dy Gwq AMk 3Aqy 1 hn[ies leI swnUM pRwpq huMdwy1 jW y pg 3: id~qIAW geIAW ie`k pdIAW dw m:s:v pg 1Aqy 2 iv`c pRwpq pdW dw guxnPl hY[ies leI 12x2y3 Aqy 18x3y dw m:s:v hY

  7. 6×x2×y=6x2yhY[ hux AsI id`qy gey do pdIAW dy hryk pd nUM Aijhy guxnKMfw dy guxnPl dy rUp iv`c ilKWgy ,ijnHW iv`c ie`k6x2y hovygw[ 12x2y3+18x3y=6x2y×2y2 + 6x2y×3x=6x2y×(2y2+3x) ies leI id`qy gey do pdI 12x2y3 +18x2y do guxnKMf 6x2y Aqy (2y2+3x)hn[

  8. pdWdwsQwnAMqrxkrxauprMqsmUhIkrxduAwrwguxnKMfIkrx do pdIAW Aqy iqMn pdIAW iv`c swfI pihlI ikirAW ivAMjk dy swry pdw iv~co swJy guxnKMf nUM bwhr k`Fx dI sI [kdy kdy Aijhw krnw sMBv nhI huMdw, pr ivAMjk dy pdW nUM smUhW iv`c vMf ky hryk smUh iv~co ie`k sWJw guxnKMf bwhr k`Fxw sMBv huMdw hY[ guxnKMfIkrx dI ies ivDI nUM smUhIkrx duAwrw guxnKMfIkrx krnw kihMdy hW[

  9. pdWdwsQwnAMqrxkrxauprMqsmUhIkrxduAwrwguxnKMfIkrx pdW dy smUh aunHW dy sQwnAMqr duAwrw vI bxwey jw skdy hn[ ies ivDI dw pRXog iqMn jW iqMn qo v`D pdW vwly ivAMjkW iv`c kIqw jWdw hY[

  10. srbMgsmqWvw dI vrqo duAwrw guxnKMfIkrx : Awau AsI audwhrxW duAwrw AljbreI ivAMjkW dy guxnKMfIkrx iv~c ienHW srbMgsmqwvw dI aupXogqw vyKIey[

  11. AiBAws

  12. svwl 1: 9x2-49 dw guxnKMfIkrx kro[ h~l: ivAMjk nUM do vrgW dy AMqr dy rUp iv`c ies qrHW iliKAW jw skdw hY[ 9x2-49=(3x)2-(7)2 =(3x+7)(3x-7)

  13. svwl 2 22a2+33b3dy guxnKMf pqw kro[ h`l ie`Qy dovyN pdW iv`c koeI sWJI A`Kr sMiKAw nhIN hY[ ies leI 22a2 Aqy 33b3 dw (m.s.v) hY[ ies qrHw 22a2+33b3=11*2a2+11*3b3 =11(2a2+3b3) ies leI,loNVINdy guxnKMf 11 Aqy 2a2+3b3 hn[

  14. svwl 3 2xy+6x2y2+14x2+y3 dy guxnKMf pqw kro[ h`l ie`Qy AsIN iqMnW pdw dw m.s.v pqw krky guxnKMf krWgy[ ie`Qy m.s.v =2xy 2xy+6x2y2+14x2y3 =2xy*1+2xy*3xy+2xy*7xy2 =2xy(1+3xy+7xy2) iesy qrHW id`qy gey ivAMjkW dy guxnKMf 2xy Aqy (1+3xy+7xy2) hn[

  15. sROq pMjwb skUl is~iKAw borf A~TvI dI ihswb dI pwT-pusqk

  16. DMnvwd

More Related