1 / 7

Polynomials

Polynomials. A polynomial in x is an expression with positive integer powers of x. Degree of Polynomial. The degree of a polynomial is the highest power of x. Terminology. 5 x is a term of 5x + 2 and 5 is the coefficient of x. A polynomial of degree 2 is called quadratic.

kele
Download Presentation

Polynomials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Polynomials A polynomial in x is an expression with positive integer powers of x. Degree of Polynomial The degree of a polynomial is the highest power of x. Terminology 5x is a term of 5x + 2 and 5 is the coefficient of x. A polynomial of degree 2 is called quadratic. A polynomial of degree 1 is called linear. A polynomial of degree 3 is called cubic. A polynomial of degree 4 is called quartic.

  2. Adding and subtracting polynomials Like terms: Like terms have identical letters and powers. Simplify (5x4– x3+ 8x) + (2x4 + 11x + 6) =7x4 – x3 + 19x +6 The usual convention is to write the polynomial with the highest power of x first. Simplify (5x3– 4xy + 8) + (2x3 + 11x + 1) = 7x3 – 4xy + 11x + 9 Simplify Take care when subtracting (3x2 + 5x – 11) – (x2 – 7x – 20) 3x2 + 5x – 11 – x2 +7x + 20 = 2x2 + 12x + 9

  3. Expanding brackets Simplify 3(2x2 – 5x + 4) – 2(x2 – 3x – 1) 6x2 – 15x + 12 – 2x2 + 6x + 2 Expand brackets: Collect like terms: = 4x2 – 9x + 14 f(x) = 4x3 – 2x2 + 5x - 11 g(x) = x3 + 3x2 - 4x + 5 Simplify f(x) + 2g(x) f(x)+ 2g(x)= 4x3 – 2x2 + 5x – 11 + 2(x3 + 3x2 – 4x + 5) = 4x3 – 2x2 + 5x – 11 + 2x3 + 6x2 – 8x + 10 = 6x3 + 4x2 - 3x – 1

  4. Expanding two or more brackets (a + b)(c + d) = ac + ad + bc + bd (x + 4)(x – 6) = x2 – 6x + 4x - 24 Collect like terms = x2 – 2x - 24 = a2 + 2ab + b2 (a + b)2 (a - b)2 = a2 - 2ab + b2 (a - b)(a + b) = a2 - b2 (a – b)3 = a3 - 3a2b + 3ab2 + b3 Expand two brackets then multiply by the third.

  5. Three brackets Expand and simplify the polynomial (2x + 1)(x – 3)(x + 4).  Expand two of the brackets, then multiply by the third bracket

  6. Identical polynomials () Find the values of a, b and c:  Expand the left hand side  Equate coefficients of corresponding powers of x  Write down the values of a, b and c a = 3, b = –1, c = 5

  7. Polynomial substitution Given that P(2) = 10 , find the value of k.  Substitute x = 2 into the polynomial and equate it to 10.

More Related