170 likes | 258 Views
4th IMPACT Workshop. Assessing Modelling Uncertainty. A. Betâmio de Almeida Instituto Superior Técnico November 2004 Zaragoza, Spain. Risk Assessment Level. Level 0 → Identification hazard Level 1 → “Worst-case” approach Level 2 → “Quasi-worst-case” – plausible upper bounds
E N D
4th IMPACT Workshop Assessing Modelling Uncertainty A. Betâmio de Almeida Instituto Superior Técnico November 2004 Zaragoza, Spain A. Betâmio de Almeida
Risk Assessment Level • Level 0 → Identification hazard • Level 1 → “Worst-case” approach • Level 2 → “Quasi-worst-case” – plausible upper bounds • Level 3 → “Best estimate”, central value • Level 4 → Probabilistic risk assessment Probabilistic uncertainty management • Level 5 → Separation of different types of uncertainty Single risk distribution Uncertainty management A. Betâmio de Almeida
Phase 1 A. Betâmio de Almeida
Reference System for Uncertainty Management A. Betâmio de Almeida
Monte Carlo Method of Simulation (L.H.S.) Uncertainty propagation scheme A. Betâmio de Almeida
Monte Carlo Method of Simulation (L.H.S.) 1 - Generation of random number [0,1] – two tipes of sets • Type 1→ for generation of samples size N for each input / parameter of the model (susbsystem) • Type 2→ one set for L.H.S. Special procedure A. Betâmio de Almeida
Latin Hypercube Sampling (L.H.S.) 2 – Latin Hypercube Sampling (L.H.S.) Justification – It is a refinement of the classical (standard) Monte Carlo Sampling. In general, it produces substantial variance reductions over standard Monte Carlo in Risk Analysis applications • Each (input/parameter) probability distribuition is divided into N intervals of equal probability (N ≡ sample size). Each strata is identified (1≤n≤N) • Each random number of set 1 [X] is renormalized according to each strata number of order → transformed matrix [X’] • Input samples of size N are generated based on [X’] and the inverse transform of each input/parameter distribution A. Betâmio de Almeida
Latin Hypercube Sampling (L.H.S.) A. Betâmio de Almeida
Monte Carlo simulation procedure A. Betâmio de Almeida
Example: RoDaB Model(Franca and Almeida 2004) • 1) • 2) • with • 3) • 4) • 5) • 6) Initial conditions and model parameters 7 input/parameter for uncertainty analysis (Exner Equation) A. Betâmio de Almeida
Example LHS (shuffling) • Size of each sample: N=1000 N≡number of strata • Number of variables: k=7 Sample matrix The vectors are correlated In order to break this correlation, we use the random number matrix [Y] k-1 samples will be randomly shuffled Induced sort sort A. Betâmio de Almeida
Parameter Analysis Input Output Sensivity Analysis Output Comparative analysis of all parameters A. Betâmio de Almeida
Integrated Monte Carlo Analysis A. Betâmio de Almeida
Upper and Lower Bounds of the Outflow Hydrographs obtained through Monte Carlo Simulation A. Betâmio de Almeida
Example of hydrographs obtained from the Monte Carlo Iterations A. Betâmio de Almeida