1 / 44

Wave-Equation Migration in Anisotropic Media

Wave-Equation Migration in Anisotropic Media. Jianhua Yu. University of Utah. Contents. Motivation. Anisotropic Wave-Equation Migration. Numerical Examples:. Cusp model. 2-D SEG/EAGE model. 3-D SEG/EAGE model. Conclusions. Contents. Motivation. Anisotropic Wave-Equation Migration.

kemal
Download Presentation

Wave-Equation Migration in Anisotropic Media

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wave-Equation Migration in Anisotropic Media Jianhua Yu University of Utah

  2. Contents Motivation Anisotropic Wave-Equation Migration Numerical Examples: Cusp model 2-D SEG/EAGE model 3-D SEG/EAGE model Conclusions

  3. Contents Motivation Anisotropic Wave-Equation Migration Numerical Examples: Cusp model 2-D SEG/EAGE model 3-D SEG/EAGE model Conclusions

  4. Irregular acquisition geometry Bandwidth source wavelet Velocity errors Higher order phenomenon: Anisotropy What Blurs Seismic Images?

  5. Anisotropic wave-equation migration: Anisotropic Imaging Ray-based anisotropic migration: Anisotropic velocity model ---Ristow et al, 1998 ---Han et al. 2003

  6. >78 wave propagator High efficiency Improve image accuracy o Develop 3-D anisotropic wave-equation migration method in orthorhombic model Objective:

  7. Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model 2-D SEG/EAGE model 3-D SEG/EAGE model Conclusions

  8. General Wave Equation Wave equation in displacement Ui : displacement component Cijkl : 4th-order stiffness tensor

  9. Eigensystem Equation Polarization components of P-P, SV, and SH waves

  10. Orthorhombic Anisotropic

  11. Orthorhombic Anisotropic

  12. and Decoupled P plane Wave Motion Equations in (x,z) and (y,z) planes

  13. det and det Decoupled P plane Wave Motion Equations in (x,z) and (y,z) planes

  14. (y,z) plane Thomsen’s Parameters Dispersion Equations (x,z) plane

  15. Thomsen’s Parameters

  16. VTI: FFD algorithm

  17. FFD Anisotropy Migration

  18. Velocity: Anisotropy: How to Set Velocity and Anisotropy Parameters a& b : Optimization coefficients of Pade approximation for FD

  19. Pade Approximation Comparison 5 Error % 0 0 Angle 90

  20. Pade Approximation Comparison 0.05 Beyond 78 within 0.02 % Error % 0 0 Angle 78

  21. Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model 2-D SEG/EAGE model 3-D SEG/EAGE model Conclusions

  22. Exact Exact Approximation Approximation ** ** Strong Anisotropy Weak Anisotropy 0.6 Kz 0 -0.3 0.3 -0.3 0.3 Kx Kx

  23. Dispersion Equation Approximation 0.3 Kz Strong anisotropy 0 -0.3 Kx 0.3

  24. 0 New V/V0=3 iso Depth (km) Standard V/V0=3 iso 2.0

  25. V/V0=3 V/V0=3 0 Strong Aniso Depth (km) Weak Aniso 2.0

  26. Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model 2-D SEG/EAGE model 3-D SEG/EAGE model Conclusions

  27. Velocity (2.0-3.0 km/s) X (km) 0 1.5 0 Depth (km) 1

  28. Velocity (2.0-3.0 km/s) Isotropic data (SUSYNLY) Anisotropic data (SUSYNLVFTI) X (km) X (km) 0 1.5 0 1.5 0 0 Time (s) Time (s) 1.2 1

  29. 0 1.5 0 1.5 Anisotropic data Isotropic mig Anisotropic data Anisotropic mig X (km) 0 1.5 0 Depth (km) 1 Isotropic data Isotropic mig (su)

  30. Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model 2-D SEG/EAGE model 3-D SEG/EAGE model Conclusions

  31. X (km) 0 5 0 Depth (km) Salt Model (VTI) 4

  32. X (km) 0 5 0 Depth (km) 4 Iso-mig

  33. X (km) 0 5 0 Depth (km) 4 VTI Aniso-mig

  34. 0 0 0 1.5 1.5 1.5 X (km) X (km) Anisotropy Error 20 % Anisotropy Error 40 % Inaccurate Thomsen’s Parameters (VTI) X (km) 0 Depth (km) 4 Anisotropy Error 10 %

  35. Inaccurate Thomsen’s Parameters 5 10 X (km) X (km) X (km) 5 10 5 10 3 Depth (km) 4 Anisotropy Error 10 % Anisotropy Error 20 % Anisotropy Error 40 %

  36. Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model 2-D SEG/EAGE VTI model 3-D SEG/EAGE VTI model Conclusions

  37. X (km) 0 5 Iso (y=1.5 km) X (km) 0 5 0 Depth (km) 4 VTI Aniso (y=1.5 km)

  38. Y (km) 0 5 Iso (x=1.5 km) Y (km) 0 5 0 Depth (km) VTI Aniso (x=1.5 km) 4

  39. Y (km) 0 5 Y (km) 0 5 0 Depth (km) Iso (x=3 km) VTI Aniso (x=3 km) 4

  40. Iso (z=0.5 km) X (km) X (km) 0 5 0 5 0 VTI Aniso (z=0.5 km) Y (km) 5

  41. Iso (z=2.5 km) X (km) X (km) 0 5 0 5 0 VTI Aniso (z=2.5 km) Y (km) 5

  42. Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model 2-D SEG/EAGE model 3-D SEG/EAGE model Conclusions

  43. Works for 2-D and 3-D media Valid for VTI and TI Improves spatial resolution o • 78 Propagator Cost = Cost of Standard 45^o propagator Conclusions o New > 78 Anisotropic wave propagator:

  44. Thanks To 2003 UTAM Sponsors CHPC

More Related