230 likes | 330 Views
Detecting galactic structure via the annual modulation signal of WIMPs. Christopher M. Savage Fine Theoretical Physics Institute University of Minnesota. Katie Freese (University of Michigan) Paolo Gondolo (University of Utah) PRD 74 , 043531 (2006). Overview.
E N D
Detecting galactic structure via the annual modulation signal of WIMPs Christopher M. Savage Fine Theoretical Physics Institute University of Minnesota Katie Freese (University of Michigan) Paolo Gondolo (University of Utah) PRD 74, 043531 (2006) GLCW8
Overview Galactic dark matter halo • Early collapse of of dark matter virialized smooth/diffuse halo (position & velocity space) • Turbulent; late accretion streams (“cold” flow) • Clumps • Tidal streams • Caustics WIMP direct detection signatures • Energy • Time (annual modulation) GLCW8
D. Dixon, cosmographica.com Halo • Galaxy formation gravitational collapse • Standard Halo Model • Isothermal sphere • Non-rotating GLCW8
D. Martinez-Delgado & G. Perez V. Springer Halo Substructure • Tidal streams • Dwarf galaxies • Sagittarius Stream • Clumps • Hierarchical clustering • Caustics Newberg et al. (2003) Freese, Gondolo & Newberg (2003) Klypin et al. (1999); Moore et al. (1999) Stiff, Widrow & Frieman (2001) Gunn & Gott (1972) Sikivie, Tkachev & Wang (1995,1997) GLCW8
Halo • Smooth halo component (dominant?) + streams / “cold” flows • Local DM density: <> ~ 0.3 GeV/cm3Typical velocities: v ~ 100’s km/s • Local velocity distribution:Mean inverse velocity: GLCW8
Halo • Velocity distribution GLCW8
Halo • Mean inverse velocity GLCW8
Detector WIMP Scatter WIMP astrophysics particle physics Direct Detection Goodman & Witten (1985) • Elastic scattering of WIMP off detector nuclei • Rate: • CDMS, CRESST, DRIFT, EDELWEISS, NAIAD, PICASSO,SIMPLE, XENON, ZEPLIN, etc. GLCW8
30 km/s WIMP Halo Wind ~300 km/s Annual Modulation Drukier, Freese & Spergel (1986) • Earth’s motion • With disk (June)Against disk (December) • DAMA/NaI (R. Bernabei et al., 2003) Modulation amplitude: 0.0200 ± 0.0032 /kg/day/keVee (2-6 keVee) • DAMA/LIBRA GLCW8
Standard Halo Model (SHM) Freese, Frieman & Gould (1988) • Non-rotating, isothermal sphere v = 270 km/s 0 = 0.3 GeV/cm3 () • Detector velocity: vdet(t) = vŸ + V(t) • Sun’s velocity vŸ (disk rotation ~220 km/s) • Earth’s orbital velocity V(t) • Characteristic time tc: vobs maximum (June 1 for SHM) GLCW8
Phase reversal Small modulation amplitude (few percent) Mean Inverse Speed: SHM GLCW8
Characteristic time tc(June 1) Modulation: SHM GLCW8
APOD 9/30/03 (Martinez-Delgado & Perez) …Add a Stream • Sagittarius (Sgr) stream Yanni et al (2003) • Sagittarius-like stream(for illustration) • Direction & speed (~340 km/s) • Dispersion: v = 25 km/s • Density: Sgr = 0.05 SHM • Sgr stream: 0.3-25% Freese, Gondolo & Newberg (2003) • Clumps: 1-5% Stiff, Widrow & Frieman (2001) • Caustic ring model: ~75% Sikivie, Tkachev & Wang (1995) GLCW8
Characteristic EnergyEc = <Eco(t)> (39 keV) Cutoff Energy Eco(t) Mean Inverse Speed: SHM + Streamno dispersion (v = 0) GLCW8
Mean Inverse Speed: SHM + Streamwith dispersion (v > 0) GLCW8
Modulation: SHM + Stream 5% Stream!!! GLCW8
Characteristic time tc (Dec 28) Modulation: Recoil Energy • Sgr stream modulation GLCW8
Modulation: Recoil Energy • Total modulation GLCW8
General Streams / Cold Flows • Phase of modulation (tc) independent of SHM • Rapid dropoff in count rate near some characteristic energy Ec • Small, cosine-like modulation below Ec • Large O(1) modulation near Ec (not cosine-like) • Ec, tc differ from Sagittarius stream GLCW8
Extracting Parameters • Characteristic energy Ec cold flow speed • Characteristic time tc cold flow direction (1 component) • Modulation amplitude relative densities (Str / SHM) • More difficult: • cold flow dispersion • 2nd direction component GLCW8
Summary • Local Halo: presence of streams / cold flows • Small component • Annual modulation • Mild effect • …except near some characteristic energy: • Relatively large effect • Not cosine-like • Modulation detection: probe structure of halo • …sooner! GLCW8